Al- Azhar University - Gaza
Faculty of Economics and

Administrative Sciences

Department of Applied Statistics

On the Truncated Distributions within

the Exponential Family

G| G | il i B3 G| il J

By
lyad M. Alganoo

Under the Supervision of
Dr. Mahmoud Okasha

Associate Professor of Statistics

A thesis submitted in partial fulfillment of requirements for the

degree of Master of Statistic

Aug, 2014



.................... Sl 5 slal g

Jaal e () e ol s elaad) Jidde o Y e sl Augll ) AlS e )
Jsb aey Leillad gla DLd ol opee 3 2 o A sal e () e JlA3 S A
Dol Ul

e bsles O e WYy dslally suall pany ) Lslall G Sl )
o el i ey L glial) bl e ) e aba auds Liliag L alas
sl

ceslially ol BSHLE 5 LLslad) oda B e ) e agys Ol e )
Al s

cdene gl (SOle e giabes e ) e allod 8 el Lo el ) o

G Al Welly £l (usiill Glaal ) LLLA5E ) salall Golall Glaal | ) o
S P RPN RO PPN I

O s Uaally oligll Igsuaiy e AYL Iolas o ) e ol aaali o1 0dl) 321 U o
colaal L calll Jeal age 8y

collaally e lsla o ) csal) (ST o

Jeadl 13 Sladl 4 Jacle e JS ) 0

)

Huucﬂ\bw‘ J@A“ \:JA LEJA\ ¢YEA ds ‘;;\



DECLARATION

| certify that this thesis is submitted for the partial fulfillment of the Master degree
and it is the result of my own research, except where otherwise acknowledged, and that
this thesis (or any part of it) has not been submitted for a higher degree to any university or
institution.



Acknowledgement

I would like to extend my sincere thanks and gratitude to all who helped me complete this
work and link to such a degree of knowledge. | would like to express my sincere gratitude
to my supervisor, Dr. Mahmoud . K. Okasha, for his constant support, and encouragement

throughout my studying. | want to thank also my graduate committee members:

Dr. Mahmoud. K. Okasha, Dr. Abdalla. M. El-Habeel, and Dr. Raid B. Salha_ for their

help, support, and constructive suggestions, throughout my master program study.

I would also give my thanks to all the faculty members in the Departments of Statistics.
The friendship and support from all the graduate students and the department staff will be
kept in my heart for the rest of my life.

I also thank all members of my family, my relatives, colleagues, and all those who helped
me and supported me.

Thank you all



Abstract

Results of studies that are based on the entire population cannot be applied on only a
particular class of the society that possesses specific characteristics. The results of such
studies will be inaccurate because of the negative influence of certain elements of society
on the study group or non-importance of some elements of the society that can be
neglected. Some conditions can be placed on the population so that the non-important part
of the society can be trimmed if that part is outside the interest of the researcher. However,
placing such conditions on the community, the data would not follow the same distribution
of entire community. Hence, we need to find the distributional characteristics of the
truncated data including the probability density functions and estimation of the parameters

for the truncated distributions. This can be done for specific class distributions.

In this thesis we discuss the distributional properties of and make statistical inference on
the parameters of some truncated distributions among the exponential family such as the
normal distribution, the Gamma distribution, and the Geometric distribution. Such
probability distributions have different applications especially in economics and

environmental applications.

Therefore, we find the distributional properties and the estimates of the parameters of the
normal distribution, the Gamma distribution, and the Geometric distribution. Finally,

simulation studies were conducted to check the results obtained in this thesis.
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Chapter 1

Introduction
1.1. Rationale:

Frequently, we need to impose upper or lower limits on the x-axis of standard unbounded
probability distributions to better represent recorded variables which are constrained in
their magnitude range because of some physical bounding process. For example,
exponential distributions can give reasonable first approximation to histograms of raindrop
diameters, but a truncated exponential distribution might be utilized to allow for the
physical reality of an upper limit to raindrop size while still maintaining the approximate
exponential form. A distribution bounding in this way is distinct from bounding that results

from censored observations which cannot be recorded beyond a certain magnitude.

A truncated distribution is a conditional distribution resulting when the domain of the
parent distribution is restricted to a smaller region. A truncated distribution occurs when
there is no ability to know about or record events occurring above or below a set threshold

or outside a certain range.

Truncated data is an acceptable commonplace occurrence in the field of reliability, when
the variable of interest is related to failure rates of items. Truncation is different than
censoring. With censoring, knowledge of items outside the restricted range is retained, but
the full information is unable to be recorded. With truncation, knowledge of items outside
the restricted range cannot be obtained. An example of truncation from manufacturing
occurs when a sample of items is selected to be studied from a population that has already
had items removed due to a failure to meet the set requirements. Another example of
truncation is the population of standardized test scores. Standardized tests, such as the
SAT, are designed to be normally distributed with a known mean and variance.
Universities and colleges have established minimum requirements for admittance, creating

a population of SAT scores with part of the lower tail of the distribution missing.

The familiar text-book on truncated distributions are natural choices for representing data
with censoring beyond threshold values . However, their value for representing situations
with a physical upper or lower bound is more questionable because the mathematical

truncation process creates finite probability density at the bounds. In reality it would be



more likely that environmental bounding processes such as raindrop break-up or maximum
storm precipitation limitation will progressively increase in intensity as the bound is
approached, giving rise to observation frequencies which decline progressively to zero at
the bound.

One approach would be to discard the original unbounded distribution altogether and
replace it with an existing flexible bounded distribution such as the beta distribution which
include unimodal forms declining to zero at the bounds. It is likely, however, that the
original unbounded distribution would have had some history of successful data fitting in
the field and the users would prefer to modify this distribution so as to incorporate an
upper or lower bound. For this situation, it would be helpful to have an alternative
truncation procedure available such that the resulting bounded distributions possess

probability density declining to zero as the bounds are approached.

1.2. Research problem:

Results of studies that are based on the entire population cannot be applied on studies of
only a particular class of the society that possesses specific characteristics. The results of
such studies will be inaccurate because of several reasons, including damage to some
elements of society, especially if the study was related to economic resources or negative
influence of certain elements of society on the subject of the study group or non-
importance of some elements of society which can be neglected. It was suggested that
certain conditions can be placed on the society so that the non-important part of the society
should be truncated for the study. This is because that part of the population may be
outside the interest of the study or may have a negative impact on the community, which
reduces the efficiency and accuracy of the results. But after placing conditions on the
community, we cannot say that the data follow the same distribution of entire community.
Hence, we need to find the distributional characteristics of the truncated data including the
probability density functions and estimation of the parameters for the truncated

distributions. This can be done for specific class distributions.

In this study the research problem is to discuss the distributional properties of some
truncated distributions among the exponential family such as the Normal distribution, the
Gamma distribution and the Geometric distribution for their important applications
especially in economics and environmental applications and make statistical inference on

the parameters of these distributions.



1.3. Research objective:
The aim of this study is to make inferences on some distributions which belong to the
exponential family and truncated at boundary points in order to propose more accurate
distributions that can be applied on certain studies and useful for researchers in different
fields. To achieve this goal, this study introduces:
1. Inference on the truncated Normal distribution which is extensively covered in the
literature as the main distribution in applied statistics.
2. Inference on the truncated Gamma distribution as a special case of the continuous
distributions within the exponential family.
3. Inference on the truncated Geometric distribution as a special case of the discrete
distributions within the exponential family.

4. Relevant recommendations based on the above results will be given.

In the inference to be made on any of those distributions the doubly truncated probability
distribution functions and their cumulative distribution functions will be given. The
moments, moment generating functions and the parameter estimation of the doubly
truncated distributions will be studied. Some simulation studies that illustrate all the above

results will also be presented.

1.4. Research Methodology :

We first discuss inference on the truncated Normal distribution as the main distribution
that has been most extensively covered in the literature and possesses the widest
applications. Then we try to use similar methodology on truncated distributions for
members of the exponential family. The doubly truncated distribution of two other
distributions from exponential family, one is continuous (the Gamma distribution) and the
other is discrete (the Geometric distribution), were selected for further investigation. In
both distributions we derive the probability distribution function, the moment generating
function and the estimation of the parameters. Finally, a simulation study for the results has

been conducted using the R statistical software.

1.5. Literature review:

In this section we discuss briefly some previous studies which introduce the truncated
distribution within exponential families, specially the Normal, Gamma and Geometric
distributions and some papers that help us to obtain the results of this study. The majority
of papers concentrated on the problem of estimation of parameters of right or left truncated

3



distributions mainly the Normal distribution and the application of different truncated
distributions. A very few studies looked at other truncated distributions and other
characteristics of those truncated distributions and other inference on them such as their
moments and hypothesis testing. Previous studies on the truncated distributions can be

summarized as follows.

Pearson and Lee (1908), presents method of moments estimation for the truncated Normal
distribution, based on estimating * and, from a random sample of normal data where the
number of observations and values in the truncated region were known. Cohen (1949),
attempt to find solution in a closed form of the maximum likelihood equations of Normal
truncated distributions but he failed to find it. Cohen (1950), suggested Newton- Raphson
(NR) method as a numerical solution to maximum likelihood equations that has no solution
in closed form and suggested that the initial values for the NR optimization should be the
sample moments. Halperin (1952), points out that Cohen relies on rough estimates for the
starting values, which can cause problems with the estimates converging too quickly in the
Newton- Raphson method, cautions against using sample moments because the NR
optimization tended to stay at the starting values. The estimates with more than one
iteration through the NR optimization process were considered. Johnson and Thomopoulos
(2002) indicated that although Normal data have high utility, situations occur where the
infinite range, N  BFD , can cause problems when estimating and inferring back to the
population. Hattaway (2010) studied the parameter estimation and hypothesis testing for
the truncated normal distribution with applications to introductory statistics grades.

Abramowitz and Stegun (1965) presented a Handbook that has been designed to provide
scientific investigators with a comprehensive and self-contained summary of the
mathematical functions that arise in physical and engineering problems. The well-known
tables of functions of Jahnke and Emde has been invaluable to workers in these fields in its
many editions during the past half-century. The last volume extended the work of these
authors by giving more extensive and more accurate numerical tables, and by giving larger
collections of mathematical properties of the tabulated functions. The number of functions
covered has also been increased. Johnson and Kotz (1970), studied a wide range of
continuous univariate distributions and included some of properties of the truncated
distributions. Barndorff-Nielsen (1978) gave a set of general conditions for the existence

and the uniqueness of the maximum likelihood estimator in a minimal exponential family.



Tiku (1989) suggested a work around using standardization and using approximations to
the standard normal density function %o.and distribution function ®. Evans, et al. (2000)
provided a concise summary of the salient facts and formulas relating to 40 major
probability distributions, together with associated diagrams that allow the shape and other
general properties of each distribution to be readily appreciated and gave a concise
statement of leading facts relating to 40 distributions and included diagrams so that shapes
and other general properties may readily be appreciated. Olver, et al. (2010) provided a
reference tool for researchers and other users in applied mathematics, the physical
sciences, engineering, and elsewhere who encounter special functions in the course of their

everyday work.

Broeder (1955), studied the estimating of the parameters of truncated gamma distribution
by method of moments and finding the maximum likelihood equations. Chapman (1956)
presented a new procedure to estimate the parameters of truncated gamma distribution by
least-squared estimation instead the method of moments and the maximum likelihood.
Hegde and Dahiya (1989) presented the estimation of the parameters of a truncated gamma
distribution. Thomas P. Minka (2002) derived a fast algorithm for maximum likelihood
estimation of both parameters of a Gamma distribution or negative-binomial distribution.
Zaninetti (2014), presents a right and left truncated gamma distribution with application to
the stars that introduces an upper and a lower boundary to this distribution. The parameters
which characterize the truncated gamma distribution are evaluated. A statistical test is
performed on two samples of stars. A comparison with the lognormal and the four power

law distribution is made.

Thomasson and Kapadia (1968) concerned with the use of the maximum likelihood in
estimating the parameter of the geometric distribution from samples of the distribution.
Kapadia and Thomasson (1971) concerned with the use of the method of moments in

estimating the parameter of the geometric distribution from samples of the distribution.

1.6. Organization of the thesis:
In the next chapter (Chapter 2) we will discuss in details some inference on the truncated
normal distribution and this chapter is divided into four main parts :

1 The distribution function of the truncated normal distribution.

9 The mean and variance of the truncated normal distribution.

1 Estimating of the parameters of the truncated normal distribution.

5



7 Simulation study on the results of this distribution

In chapter 3, we will discuss in details inference on the truncated gamma distribution, and
this chapter is divided into four major sections :

1 The distribution function of the truncated gamma distribution.

1 The moments of the truncated gamma distribution.

1 Estimating of the parameters of the truncated gamma distribution.

)l

Simulation study on the results of this distribution.

In chapter 4, we will discuss in details inference on the truncated geometric distribution,
and this chapter is divided into four main sections :

1 The distribution function of the truncated geometric distribution.

1 The moments of the truncated geometric distribution.

1 Estimating the parameters of the truncated geometric distribution.

)l

Simulation study on the results of this distribution.

In Chapter 5, we present some conclusions, recommendations, and suggest some

prospective topics for further research.



Chapter 2

Inference on the Truncated Normal Distribution

2.1 Introduction :

A truncated distribution is defined as a conditional distribution that results from a parent
distribution and restricted to a smaller region. It occurs when there is no ability to know
about or record events that occurs above or below a set threshold or outside a certain range.
Truncation is different than censoring. With censoring, knowledge of items outside the
restricted range is retained, but the full information is unable to be recorded. With
truncation, knowledge of items outside the restricted range cannot be obtained.

Let & be a random variable from a distribution with a probability density function, "Q® , a
cumulative distribution function, "O¢ , and the range of the support  BFD . The density

function of ¢ given the restrictionthat ¢ &  Qis

QW o
”n "N 2 5 I —— w w [6V)
Q. O w 0@ 06 8 P
1 EMMI 0VQI Q

(See Hattaway, 2010). Because "Qix0 & @ is scaled up to account for the
probability of being in the restricted support, Q& & @ is a density function. The
restriction can occur either on a single side or on both sides of the range. Truncation that
occurs on a single side of the range is called singly truncated and on both sides of the range
is called doubly truncated. When the truncation occurs at the upper (or right) end of the
support range, this is called truncation from above. When the truncation occurs at the lower

(or left) end of the support range, this is called truncation from below.

2.2 Truncated Normal Distribution

The Normal distribution is a commonly used distribution in nature, education, and business
data, which are mounded or have a bell shape curve, are easily found across various fields
of study. This is often due to the central limit effects, where a measurement is the mean of
a collection of random effects. Johnson and Thomopoulos (2002) indicated that although
normal data have high utility, situations occur where the infinite range, @~  BHD , can
cause problems when estimating and inferring back to the population.

Applying equation (2.1) to the normal density function, the truncated Normal density

function takes the form:



Q .
W o— c&
g, & on aho i,

(see Hattaway, 2010), where the function:

O on G, P _onn Qb &
Vi, G

scales the distribution. This scaling factor can be interpreted as the probability of being in
the restricted range ¢ho for a givenpand, . The valuep 0 &N cfooquh, s the
percent P truncation of the distribution. If the distribution function of the standard

normal distribution, denoted by ® 8, is available then

0 N s h, —_— — 8 c8

Figure 2.1 shows a graph of various density functions of a left truncated Normal
distribution with truncation point a = 0 and having different values of mean ‘ but fixed
value of , = 1. The shape of the distribution changes as different values for * are

considered.

1.0

08
I

06
i

0.4

0.2

0.0
i

Figure (2.1) : Different Density Functions of Left Truncated Normal Distributions with
Different Values of Mean ‘ and Fixed Value of ,, =1



Figure 2.2 illustrates a graph of various density functions of a left truncated Normal
distribution with truncation point c= 0 and having different values of standard deviation ,,
but fixed value of mean at‘ = 1. The distribution flattens when larger values for , are

considered.
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Figure (2.2) : Different Density Functions of Left Truncated Normal Distributions of

Different Values of Standard Deviation ,, and Fixed Value of Meanat‘ =1

Johnson and Kotz (1970) provided the expected value of a doubly truncated Normal

random variable & at the truncation points [a,b] as

%o 2 %o L —
'O (I) ‘ ., (bn g (‘b” . h CEB)
o — O —

where %08 is the density function of the standard Normal distribution. The expected value
is equal to * plus an adjustment for the truncation on the distribution. This adjustment
shifts the expected value ‘O & into the appropriate tail based on the truncation. For
example, when there is more truncation on the lower portion of the domain than the upper,

then 'O & shift into the upper tail.



Johnson and Kotz (1970) also provided the variance of a truncated Normal random
variable & at the truncation points ¢fto as

(I) 3 (b 3
%0

= 3 . = 3 ” 8 C@

Like the expected value, the variance of @is adjusted for the truncation. When there is

symmetric truncation, that is ® w 1, the expected value and variance of

a truncated Normal random variable & are
Oow C¥

¢ %o

— . 8
@1 p N

W QW p
Often the goal is to make inference back to the original population and not on the truncated

population that is sampled. This means that the inference is made on ‘ and not 'O & 8

2.3 Estimation of the parameters of the truncated Normal distribution

Consider the maximum likelihood estimators (MLE) and the method of moments (MoM)
estimators for the doubly truncated Normal distribution at the truncation points ¢t . This
distribution is also referred to as a "positive™ Normal distribution. Without loss of
generality, the symmetric nature of the Normal distribution permits changing truncation to
match a left truncated distribution. For a right truncated distribution, a new variable would
need to be defined as Y “Y  where "Y is the point of truncation and** Y

will be the new parameter of interest.

2.3.1 Maximum Likelihood Estimators
The likelihood function for the doubly truncated Normal distribution at the truncation

points ¢Yw is

0 ‘h, Qo ———— Q N



The log-likelihood is then given by:
ah  10°h

it e e i+ — Bow
el 10 WV ohw quh, el 1 c*, C—8 ¢ T
Under normal circumstances, the maximum likelihood and the method of moments
estimation procedures are straightforward. However, when dealing with a truncated
Normal, the 0 N ¢fdoquh,  term is part of the estimation. This probability is defined

in (2.3) and (2.4), respectively, as

a7 Qb P p

[k, o — & —— 38 P q

The Lebesgue's Dominated Convergence Theorem (See Hattaway, 2010) states that

TT—_ %o 'Q & TT—_/a Q4

under the condition that a dominating function "Qd& exists for %o ¢ , which converges to a
finite value. Interchanging differentiation and integration, the first derivate of (2.11) with

respectto‘ and, are

rNYh — Qon z——0h
T I C” ” VIC“
. w w
N L en : 2 P gg
T ” c” ” VIC“ ” I/Iq“

Using the derivatives above, the gradient (G) or the first partial derivative vector of
(2.10) with respect to the parameters is

| o

(2.13)

offe]
.
I
|
(92}
o8]
S

|
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As Cohen (1949) points out, the problem of no closed-form solution to (2.13) means that
solving G = 0 must be performed iteratively. Newton-Raphson is suggested by Cohen
(1950), but Halperin (1952) points out that Cohen relies on rough estimates for the starting
values, which can cause problems with the estimates converging too quickly in the

Newton- Raphson method.

The second derivatives of (2.11) needed for the Hessian are

. W w
PUSRTENT SR NI I
” ” c ” c
- w Lw w
i LD oo L B
T ” c” ” I/lc ” I/lc ” MC
L w w ow '
HUR - an . & 29 g
‘ ! T 1
r. G . VG n VI

Using the equations above and taking the derivatives of (2.13), the Hessian, or second

derivative matrix of (2.10), is

T°Q 17Q,

— —11

( IT“ T i

U I B g
v éerjNirNi ¢ érr“@“j NN e B
11 r ”_ [ ., 1l
1 i N . . B
ué”NéN‘ NN e B é”NJN, N ¢ tBo *
u |— ” |— c” Cn U

Iterating to find a solution is one of the problems with the MLE. The other problem is that
numerical integration is required to evaluate] i and [ at each step of the iteration.
Tiku (1989) proposed to work around using standardization and using approximations to

the standard normal density function %o.and distribution function ®.

The coding for the MLE has several integrals to be evaluated at each iteration of the
Newton-Raphson (NR) method. These integrals rely on the integrate command in R. The
NR optimization is done using the niminb function in R. This function allows for user-

defined gradient and Hessian, instead of relying on numerical approximations to them. The
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function nlminb also has an option to add bounds for the parameter estimates, preventing
invalid parameter estimates. The downside to the nlminb function is that it is slower than
other optimization functions in R, but the other built-in functions do not allow for user-
defined gradient, Hessian, and bound on the parameters. Attempts using them resulted in
invalid parameter estimates with negative variances estimates, or the optimization function

never deviated from the initial values. (See Hattaway, 2010).

Cohen (1950) suggested that the initial values for the NR optimization should be the
sample moments. Halperin (1952) cautioned against using sample moments because the
NR optimization tended to stay at the starting values. The estimates with more than one
iteration through the NR optimization process were considered.

2.3.2 The Method of Moments Estimators

The method of moments (MoM) estimation for the truncated Normal distribution has been
done by Pearson and Lee (1908) based on estimating * and, from a random sample of
normal data where the number of observations and values in the truncated region were
known. Cohen (1949) illustrated that these estimators are similar to the MLE and share the
same problem of relying on iterative solutions to find the estimates. Pearson and Lee
(1908) stated that the MoM estimates take the forms:

w8

‘R
P
g

¢tBw Bow
Bw

where ' —— s the point of truncation measured in standard units of the population and

r and [ are moment functions of "M Here[ is dependent on tables and the calculated
values of 'D'nd [ . Cohen (1949) indicated that the MoM equations derived by Pearson
and Lee (1908) are equivalent to the MLE equations derived by Fisher (1930).

Applying the suggestions of Tiku (1989) for the MLE, the MoM estimators are modified to
be

(2.14)
T (2.15)
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where |  —, _| and 1 | 1 _ | 8

[}
Solving (2.14) and (2.15) using the sample moments, the MoM estimates are

BQ
%8t Al o

t A1y @ (2.16)
6 A %8 %8
B

Ap 14 t ctAd A1y 8 (2.17)

The lack of a closed-form solution means that the MoM estimators must be found using an
iterative approach. Uses Newton-Raphson to find the estimators. The code minimizes the
parameters while solving (2.16) and (2.17) simultaneously. Like with the MLE code, the
sample moments were used as the initial estimates for Newton-Raphson. (See Hattaway,
2010).

2.4 Simulation Study

Figure (2.3) presents various parameter combinations with a truncation point at 0. The
different * and, combinations shown in Figure (2.3) provide a visual representation of the
distributions of interest. Combinations with larger values of , spread out and flatten. The
flattening effect makes distinguishing distributions with different values of * and the same
values of ,, hard. From Figure (2.3) the remaining parameter combinations reflect

differences in the amount of truncation and not on particular values of * and ,, .
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O
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Figure (2.3) : Different Density Functions of Left Truncated Normal Distributions
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Figure (2.4) : Bias For * of Left Truncated Normal Distributions

Figure (2.4) presents graph of bias for * for the different parameter combinations. The

percent truncation for each parameter combination is found in parentheses next to the

parameter combination. Figure (2.4) shows that the bias for * Khrinks as the sample size

increases.
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Figure (2.5) : MSE For * of Left Truncated Normal Distributions
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Figure (2.5) presents graph of MSE for * for the different parameter combinations. The
percent truncation for each parameter combination is found in parentheses next to the
parameter combination. Figure (2.5) shows the MSE for ‘ HUThe performance of the
“ 1h, p combination is as expected for both the MLE and MoM estimators. The
MLE for the * T, p combination had a relatively small MSE, but the MoM
estimator had a larger MSE that failed to converge to 0 with an increasing sample size. The
only other estimator that failed to converge to 0 was the MoM estimator for the °

¢AT A ¢ combination. The other estimators had MSE's that converged to 0. The
15.87% truncated parameter combinations had larger variability for the MLE at the small
n, but as n increased, the MSE converged to 0. Even though the * ¢h, p
combination had near zero bias for * Hor the different sample sizes of n, the MSE was large

for the small sample sizes.
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Figure (2.6) : Bias For,, of Left Truncated Normal Distributions

Figure (2.6) presents a graph of the bias for,, for the different parameter combinations of
left truncated Normal distributions. The percent truncation for each parameter combination
is found in parentheses next to the parameter combination. Figure (2.6) depicts the bias for
, Of the left truncated normal distributions from the simulation study. The MLEs for ,, had

a negative bias as expected, but they perform remarkably well in each of the 5 cases
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studied having a near 0 bias. The MoM estimator for , for the* TAT A p
combination again performed as expected, but the other MoM estimators had significant
negative biases. The MoM estimator for the* ¢h,  p combination had the smallest

bias, converging to about -0.05.
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Figure (2.7) : MSE For,, of Left Truncated Normal Distributions

Figure (2.7) presents graph of MSE for ,, for the different parameter combinations. The
percent truncation for each parameter combination is found in parentheses next to the
parameter combination. Figure (2.7) shows the MSE for ,,. The MLEs behave in a similar
fashion as did the MLEs for * HI'here is less variability in the estimators, but the higher
MSE is present for the two 15.87% truncation parameter combinations. The MoM
estimators for,, behave like those for * Kvhen the percent truncation is small, but at higher

levels of truncation, they have larger MSE.
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Chapter 3

Inference on the Truncated Gamma Distribution

3.1 Introduction

The truncated Gamma distribution is an important distribution and of interest to many
researchers due to its applications in life testing and reliability problems. Broeder (1955),
Chapman (1956), and Gross (1971) are some of the other recent papers which studied
estimating the parameters of a truncated Gamma distribution. Barndorff-Nielsen (1978),
pages 150-160, gave a set of general conditions for the existence and the uniqueness of the
maximum likelihood estimator in a minimal exponential family. It becomes clear from a
review of the literature that the estimation problem in the case of two-parameter truncated

Gamma distribution needs to be studied in greater depth.

In this chapter, we are going to study the truncated Gamma distribution in details and give
the probability distribution function (pdf) and the cumulative probability distribution
function (cdf) for the truncated Gamma distribution and will show the shape of those
functions. We will also study the moments and the moment generating function of the
distribution. Finally, we are going to study the estimation problems of the parameters of
the truncated Gamma distribution and attempt to give reliable estimators of its parameters.
In all the discussions below we study only the two-parameter truncated Gamma
distribution as it is the general form and discuss the truncated distribution from both the

left and right (the doubly truncated case).

3.2 The Gamma Distribution
Let & be a random variable taking values in the interval T following the Gamma

distribution. The pdf can then be expressed as :

- Q
“Q \ ﬁ i ﬁ
ol T o
where
D
o i 0 Q Qb o}
is the Gamma function, formula (3.1) above with T Ttis the scale and | Ttis the

shape. (See Johnson, et. al, 1994). Its expected value is
owNhR | Th o
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and its variance is

The cdf is denoted by:

"0 i

@|
where [ { R is the lower incomplete Gamma function and is given by:

[P 6 Q 0@ o
Note that the term o ifw is known as the upper incomplete Gamma function. See
Abramowitz and Stgun, (1965) and Olver, et al., (2010) and is given by:

o i Db Q Qb
wi T ifwh
by integration by parts, we can expressed & { Fto as
o i oo i pwi pho o o
The mode is at
acfi |71 0mE  p8 o)

(See Zaninetti, 2014).

The two parameters of the distribution can be estimated through the method of moments

(MoM) by matching the moments to obtain the following estimates :

| lgl' h oo
.
I ah oP T
where ofand i are the sample mean and the sample variance, respectively. (See

Evans, et al. 2000).

The maximum likelihood estimators (MLE) of the parameters of Gamma distribution are

p .
| ———~h oP p
L ... B a&
G aef 3
. .._ B am
I cuf o eof é—8 0P ¢

(See Thomas P. Minka, 2002) .
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3.3 The distribution function of the truncated Gamma

3.3.1 The Probability Density Function

Let be a random variable having the truncated Gamma distribution and taking values in

the interval ¢fud. The truncated pdf of any variable takes the form:

Wi o 6 —oan
QA Qw
(See Block, et. al., 2010).
,‘Qdﬂ]vﬁ F]
Oalh s
Qad B hotw "omﬁm"omﬁ 8

The pdf of the truncated Gamma distribution then takes the form:

Qo B Ao

Using the property [ i @i @ i hio hwe obtain

£
“de’nh ™y i ~
. N ) . N )
Il @I'}- w| QJIQ—
w Q
r :
-0 N )
Twlq— @IQ—
T - -
Qu i hhw v — Q h

where the constant K is
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In Figure (3.1), we present the shape of the truncated Gamma distribution function using
formula (3.17) with a (blue) dashed line together with the distribution of a simulated
sample of 1000 observations generated from the truncated Gamma distribution with a (red)
solid line and superimposed on the empirical distribution generated from the Gamma
distribution using formula (3.1) with a (black) solid line. However, Figure (3.2) presents
the shape of the same distributions of truncated gamma distribution function using formula
(3.17) together with the distribution of a simulated sample of 1000 observations but this
time generated from the Gamma distribution then truncated by omitting values outside the
truncation range with a (red) solid line and superimposed on the empirical distribution
generated from the Gamma distribution using formula (3.1) with a (black) solid line. It is

clear that the empirical distribution and theoretical one generated from formula (3.17) are

identical.
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Figure (3.1): Distribution of Data Truncated from Generated Original Gamma (alpha=5,
beta=10)
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Figure (3.2): Distribution of Data Truncated from Generated Gamma (alpha=5, beta=10)
In Figure (3.3) present the shape of the truncated Gamma distribution function using
formula (3.17) with different values of truncation points and we fix the right truncation
point (b=70) and change the left truncation point (a=20,35,50) together with the original
Gamma distribution with a (black) solid line. However, figure (3.4) present the shape of
the truncated Gamma distribution function using formula (3.17) with different values of
truncation points and we fix the left truncation point (a=30) and change the right truncation
point (b=50,60,70,80) together with the original Gamma distribution with a (black) solid

line .
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Figure (3.3): Truncated Gamma Distribution (alpha=5, beta=10)
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3.3.2 Special Cases

1) Left Truncation Gamma Distribution :

Let ¢ be a random variable having the truncated Gamma distribution and taking values in

the interval ¢¥B . The truncated pdf of any variable takes the form (3.17) above.

As we know ¢ | D W;b Q QO mhwe obtain
R R
"Qal) h ho 5 h oP W
I ﬁ\—
®w Q 5
h o8 Tt
%6 0 Qo

Letdo —hthen'Qd — and we have:

blf%(—oo bt 6DO b

o e w Q
QN h hohw —
P O —~— QO
T S
e i ® Q
Qal A hhw 8 o8 p
°6 0 Q6

Formula (3.21) is identical to a result of (Koning and Franses, 2003).

2) Right Truncation Gamma Distribution :
Let cbe a random variable having the truncated Gamma distribution and taking values &

in the interval Tifto. The truncated pdf of any variable takes the form (3.16). Substituting
@ 1IN (3.16) we get :

~ o~ v

"Qaud A hrtw

Qan i i

¢

fol ol

Using the property [ ifto @i ¢ i fwo hwe obtain
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Letd —hthen Q0O — and we have:

~
g

. w .
ODT[OT—iODTl' W

o~ cem & 0 Q
Qa) A hw - —
o .-0Q0
A
o e w Q
Qall K hw 8
6 Q Qo

Formula (3.23) is identical to equation (1) in Hegde and Dahiya (1989).

3.3.3 The Cumulative Density Function
The cdf of the truncated Gamma distribution take the form :
“Odm ﬁ |"u|"’?‘ "Qd_fﬂ ﬁ |"u|"’?‘ ,Qd)

L0 -
UT—QQw

o - P o -
© Q Qo = Q Qo

—hthen' Q6 — and we have:

Let O
oD D ‘§?OD
w t 0
wbn Dt ol%—o b
Thus we have,
)

Ok O 6 QT Q6 o

U ¢\ B
O i R 01 &1 o
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Figure (3.5) presents the shape of the cumulative density function of the truncated Gamma
distribution using formula (3.25) together with the shape of a simulated sample of 1000
observations generated from the truncated Gamma distribution with a (green) dashed line
and superimposed on the empirical distribution generated from the Gamma distribution
using formula (3.1) with a (black) solid line and Figure (3.6) present the shape of the
cumulative density function of the truncated Gamma distribution using formula (3.25)

with different values of truncation points together with the cdf of original distribution.
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Figure (3.5): Empirical CDF for Gamma Distribution (alpha=5, beta=10)
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Figure (3.6): Empirical CDF for Gamma Distribution (alpha=5, beta=10) with

truncation points a=20, b=70

3.4 The Moments of the Truncated Gamma Distribution

3.4.1 The Mean
The expected value of truncated Gamma distribution is

:O(:d,-“ ﬁ |"ul"’7’ (b"m ﬁ |"u|""§‘ ,Q(b

¢ -
wUT— Q Qw
. 0 W —
L] — - Q Qw
[
. ® —
L1 T_ Q Qw
5 » _ 2 ® _
O f T_ Q Qw T_ Q Qw
Letdo -+ Qw T QO
&
GO Dt équD

Gd© D + éqf—j)oas
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Then

~
8L

ol | ply Q | ply

og @

Figure (3.2) presents the value of the mean of the truncated Gamma distribution function

using formula (3.26) for the distribution mean and using a simulated sample and both

illustrated on the truncated Gamma distribution function curves. The two means were

found to be exactly identical as it appears only one mean in the figure.

3.4.2 The Variance
Now, to obtain the variance of truncated Gamma distribution

oo Nk fo o "Qal) i ko Qw

N I
wvu T_ Q Qw
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L () T_ Q Qw
. 0w —
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f f
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Therefore,
WO A KD Oooni KRd oWk kfd 8

3.4.3 The *homent :

The & moment of the truncated Gamma distribution is

oo Nk o o "Qal) i FhD Qo

. 0 -
ooUT— Q Qw
LW -
)] W T_ Q Qw
f o) —
LZ — w - Q Qw
f f
: W -
of — — Q Qw
f f
. w -
Uf T_ Q Qw
) oo(ba ) -, . oow -, .
b)) T_ Q Qw T_ Q Qw
Letdo -+ Qw f Q0O
o o1 oo
o0 o0
GO +<‘q§)°
o0 o0
Then
oo M hd  of 0 Q1 Qo o Q1 Qo
Of W | é(l'? W | dl?(—BS o8 Y

29



3.4.4 The Mode of the Truncated Gamma Distribution :

The mode of the truncated Gamma distribution is the value wat which its pdf has its

maximum value .

Q QN i o Q. Q"
Qo Qo
v Q . o "
Y
Q@A kfd 0 S
o T | pw Q w Q T_ h
Let nhhh Tihwe get
v - — - P
T—| pw Q w Q = ]
P Q w Q TE Tt
| pw Q w Q TB
. P
w_
| P 7
w T | Pl T ThhmMs p o8 w
Therefore, we get the mode of the truncated Gamma distributionat @ | | p 38

3.5 The Moment Generating Function of the Truncated Gamma Distribution
For random ¢ which follows a gamma distribution, @| fi hthe moment generating
function (mgf) is given by

b6 o p 1o M m{-’ 8
Now we consider @wa random variable which follows a doubly truncated version of &b with

lower truncation point, ¢hand upper truncation point, A. The mgf of Qis

0 6o 0Q Q "Qa i hH Qo
nQr L
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P 0@ 2 ..
Oah o h ol
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Multiply equation (3.30) by hwe obtain
5o p T o pT ow 0Q
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For N T , we obtain
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Note that the (cdf) of Gamma distribution can be expressed as
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Then we can rewrite that definition as

"Owp 1 oA "Owp 1 ok

@va‘—pTTO ®|h7~prT0v
p B p B h

@th)TT 2 <l.>|h7mpTT ov
@| "
Also we have,
Oulh Ol h Y 8
Now, substituting equation (3.32) in equation (3.31), we obtain
5 5, O®p 1 MA Ovp T MA .-
Ol "Own h
@th)TT 2 <‘+>|h7*’°pT Lo
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Thus, the moment generating function of ¢ which follows a doubly truncated Gamma

distribution equal the product of the moment generating function of a random variable &

which follows a Gamma distribution and a factor which accounts for the truncation .

3.6 Computing the Moments from the Moment Generating Function
3.6.1 The Expected Value :
The expected value of the random variable ®is

o i o 0Nos
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3.6.2 The Variance :
Now, to obtain the variance of the truncated gamma distribution, we have
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3.7 Estimation of the Parameters of the Truncated Gamma Distribution

3.7.1 Maximum Likelihood Estimators of the Truncated Gamma Distribution :

The likelihood function is denoted by
\ B
N W :
U U — Q
I
B _ B
v Q 8 o Y
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The log-likelihood function is

b 1D | p iIT— T8 o w

Now, to obtain the maximum likelihood estimators, we derivate equation (3.39) with
respectto| andf .
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is a special case of the Meijer G-function (see Prudnikov, et al. 1992).
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Maximum likelihood estimators can be found by solving equations (3.40) and (3.41) using
iterative methods. Maximum likelihood estimation with grouped data has been discussed
by Rosaiah et al. (1991) in the context of choosing optimal groups. Numerically the ML
estimates are found by maximizing a function of incomplete Gamma integrals (see Brawn
and Upton, 2007).

To find the maximum likelihood estimates of | and note that maximizing the log-
likelihood in equation (3.39) can be accomplished by using the R software . The function-
likelihood- in R software can be used in finding the maximum likelihood estimates of |

andt for data from a truncated Gamma distribution.

Moreover, a solution for equations (3.40) and (3.41) to obtain a closed form for the MLE
of| andT is not possible. However, the MLE can be obtained numerically using Newton-

Raphson iteration method.

3.7.2 Alternative estimation procedures

3.7.2.1 Chapman’s procedure for a truncated gamma distribution :

With the truncated Gamma distribution there are three parameters to estimate. Chapman
(1956) suggested a procedure based on deliberate grouping of the data. His procedure
depends on reducing the number of parameters from three to two. Chapman chose to work
with the logarithms of the ratios of the counts in successive bins (so that N cancels). The
inversion of the (r — 1) x (r — 1) variance—covariance matrix is not straightforward.
Chapman gave the form of the inverse in the case of equi-probable bins and suggested
omitting every second ratio if the inversion is infeasible, though that results in much less

efficient estimates .
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3.7.2.2 The Dahiya-Gurland method :

Dahiya and Gurland (1978) wished to circumvent the non-linear maximum likelihood
equations. They developed generalized minimum chi-squared estimators that were the
solutions resulting from a lengthy sequence of simple matrix operations, with two of the
three critical matrices involved containing differences of estimated moments and the third
containing estimated cumulates. Their study concluded that, theoretically, these were
efficient estimators. The method assumes an un-truncated distribution and results for finite

samples are not given.

3.8 Simulation Study

A simulation study has been conducted to study the properties of the MLE of| and? of
the truncated Gamma distribution at different sample sizes (n=20,50,100,200,500) when
the true parameters equals (| L and | p 1. Figure (3.7) presents bootstrap
distributions for 100 samples of truncated Gamma distribution with a (red) solid line
together with 100 samples of Gamma distribution with a (black) solid line. We observe
that the sampling distribution and bootstrap distribution are the same and figure (3.8)
presents bootstrap distribution of the means of truncated Gamma distribution together with
original distribution, the dotted lines correspond to the means. Based on the bootstrap
distribution, the 95% confidence interval for the mean by percentile bootstrap method is
(46.31, 46.76).
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Figure (3.7) : The Densities of 100 Bootstrapped Samples for Gamma Distribution
(alpha=5, beta=10).
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Figure (3.8) : Comparison of Bootstrapped Truncated Means for Gamma Distribution
(alpha=5, beta=10).
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Figure (3.9) represents the sampling distributions of the estimate of scale parameterf of
the truncated Gamma distribution for different sample sizes (n=20,50,100,200,500) with a
(red) solid line together with the dotted line which represent the mean of distribution.
Figure (3.10) represents the sampling distributions of the estimate of shape parameter| of
the truncated Gamma distribution for different sample sizes (n=20,50,100,200,500) with a
(blue) solid line together with the dotted line which represent the mean of the distribution.
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Figure (3.9) : Sampling Distribution of the Estimate of Scale Parameter for Gamma
Distribution (alpha=5, beta=10).
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Figure (3.10) : Sampling Distribution of the Estimate of the Shape Parameter for Gamma
Distribution (alpha=5, beta=10).
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Table (3.1): Expected Values and Standard Errors of the Estimate of | and] of the
Truncated Gamma Distribution at Different Sample Sizes When the True Parameter
(alpha=5, beta=10).

For » For 5
. Standard Standard
Sample size (n) Mean Error Mean Error

20 1570.772 36692.64 9.560196 7.759768

20 (trimmed) 6.070658 6.756753 12.11214 6.663903
50 18.23002 1110.056 10.74494 3.753756

50 (trimmed) 5.658334 3.732658 10.74494 3.753756
100 5.291514 2.145619 10.35315 2.563726

200 5.116577 1.122945 10.17575 1.773892

500 5.050782 0.6633553 10.0587 1.109506

From Figure (3.9), Figure (3.10) and Table (3.1) above we can observe that the estimates
of the parameters | and | are biased but as the sample size increase, the amount of bias
decrease (i.e., the estimate of the parameters of the truncated Gamma distribution are
(asymptotically) unbiased for large samples. As can be seen in Table (3.1) above, the
standard error decreases as the sample size increase (i.e. the estimators of the parameters, 4
and 1, are consistent). This means that the MLE estimators of the truncated Gamma

distribution are (Asymptotically) unbiased and consistent estimators.
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Chapter 4

Inference on the Truncated Geometric Distribution

4.1 Introduction

In this chapter we are going to study the doubly truncated Geometric distribution in details
and derive the probability mass function (pmf) and the cumulative probability distribution
function (cdf) for the truncated Geometric distribution and will show the shape of those
functions. We will also derive the moments and the moment generating function of the
distribution. Finally we study the estimation problems of the parameters of the truncated
Geometric distribution and attempt to give reliable estimators of its parameters. In all the
discussions below we study the doubly truncated Geometric distribution with a parameter,

p, as it is the general form.

4.2 The Geometric Distribution
Let & be a random variable having the Geometric distribution and taking values @
plgfofB . The Geometric pmfis

5o 6 hpon o hoo op
e i 0 Qi Q

A
a 4
a(
—~

®

where
m 1 pand
n p N
Such a variable represents the number of trials or failures until the first success. See Evans,

et al (2000).

Its expected value is

p.
Ow ﬁh 8
and its variance is
WO u 1 ®
n n
The cumulative distribution function (cdf) is denoted by:
O p Rh o plghos 18

The moment generating function (mgf is
0 0 NQp nNQ 8
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The mode of the distribution is at 1.
The parameter can be estimated through the method of moments (MoM) by matching the
moments

U 18
where afis the sample mean, see Evans, et al (2000).
Maximum likelihood estimator (MLE) of the parameter of Geometric distribution is the
same

p .

Nk Zlh &

( Thomasson and Kapadia, 1968).
4.3 The Distribution Function of the Truncated Geometric Distribution

4.3.1 The Probability Density Function
Let & be a random variable having the truncated Geometric distribution in the interval

ofto and taking values @ ¢ pfB Fo  p. The truncated pdf of any variable takes the

form:
AW B e Qw |
? W W W
QWEY O 0 = Qo ——h
Ow p Ow

where "Q8 and "O8 are the pdfand cdf of Geometric distribution, respectively.

The pdfof the truncated Geometric distribution then takes the form:

N

“Q N (I) (’I’)

s nn

Q W 0w T/
Q200 N

Figure (4.1) represents the shape of distribution of pdf of the Geometric distribution with

parameter (p=0.3) in (a). Figure (4.1) (b) represents the shape of distribution of data

generated from Geometric distribution with the same parameter (p=0.3) then truncated at

truncation points a=2, b=7, while Figure (4.1) (c) represents the shape of distribution of the

data generated from truncated Geometric distribution with the same parameter and
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truncation points and Figure (4.1) (d) represents the shape of theoretical distribution
(formula 4.8) of truncated Geometric distribution with the same parameter and truncation
points.

We observe that the shape of distribution in figures (4.1)(b)-(d) are identical.
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Figure(4.1): The Shape of PDF of the Geometric Distribution, Truncated Geometric
Distribution of Simulated Data from Geometric and Truncated Geometric Distribution, and
of Theoretical CDF of Truncated Geometric Distribution with the Same Parameter (p=0.3)

at Truncation Points a=2, b=7.

4.3.2 Special Cases :

1) Left Truncation Geometric Distribution :
Let be a random variable having the truncated Geometric distribution from the left and

taking values @ ¢ phd ¢FB . The truncated pdf of any variable takes the form:

R Qw
g W Y
VW W

nn
p 0w
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2) Right Truncation Gamma Distribution :
Let & be a random variable having the truncated Geometric distribution from the right at b
and taking values & plgf8 R The truncated pdf of any variable takes the form:
LW W
nn
Ow p

4.3.3 The Cumulative Distribution Function

The cdfof the truncated Geometric distribution takes the form :

06 00
nn
n n
n ,
Aon f
n n n
n n p N
LN R ph8 o p8 8

Figure (4.2) represents the shape of cumulative distribution of the Geometric distribution
with parameter (p=0.3) in (a). Figure (4.2)(b) presents the shape of cumulative distribution
of data generated from Geometric distribution with the same parameter (p=0.3) then
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truncated at truncation points a=2, b=7, while Figure (4.2) (c) represents the shape of
cumulative distribution of data generated from truncated Geometric distribution with the
same parameter and truncation points and Figure (4.1) (d) represents the shape of
theoretical cumulative distribution (formula 4.9) of truncated Geometric distribution with
the same parameter and truncation points. We observe that the shape of cumulative
distribution in Figure (4.1)(b)-(d) are identical.
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Figure (4.2): Shapes of CDF of the Geometric Distribution, Truncated Geometric
Distribution of Simulated Data from Geometric and Truncated Geometric Distribution, and
of Theoretical CDF of Truncated Geometric Distribution with the Same Parameter (p=0.3)

at Truncation Points a=2, b=7.

4.3.4 The Expected Value

Its expected value of the distribution is expressed as:

. NN
Ow O
nooA
r‘] d)”]
n n
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We can easily show that the sum of the arithmetic Geometric series takes the form:

W Ew & p®

IIQ 4 _ F]
W 5o 1

Using formula (4.10) and the sum of the Geometric series we obtain:

0p M N & dpn 66 A L
n N p N p N
nn n ® & pn O O ¢n O pp Nnp N
n N PN
nn p @ On @ 0 pN
n N p N
I p “Op N ® pn
n n PN
n p GOn @ @ pn
n N p N
p p GO @ 0 pN
P N PN
p GO @ ® pn
P N PN

p O n oM

O 8 1
ne n ®p

Figure (4.3) presents the expected values of the mean of both the Geometric distribution
and the truncated Geometric distribution, using formula (4.11) of the distribution mean,
and using a simulated sample and both illustrated on the bootstrapped distribution curves.
In figure (4.3) of the bootstrap distribution of the means of truncated Geometric
distribution and the original distribution, the dotted lines correspond to the means. Based

on the bootstrap distribution, the 95% confidence interval of the mean is (3.82,4.21).
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Figure (4.3): Comparison of Bootstrapped Means for Both Geometric and Truncated

Geometric Distributions with Parameter P=0.3 and Truncation Points (a=2 & b=7).

4.3.5 The Mode of the Truncated Geometric Distribution

The mode of the truncated Geometric distribution is the value wat which its pdf in
equation (4.8) has its maximum value, that is, the value wthat makes the amountr}  has
maximum value. From the figure (4.1) for the pdf of truncated Geometric distribution, we
note that the maximum value of its pdfis at the first value of @  (i.e.® @ p).

Therefore, we get the mode of the truncated geometric distributionat ® @ p.

4.4 The Moment Generating Function of Truncated Geometric Distribution
The moment generating function of the truncated Geometric distributions with parameter p

and truncation points a and can be expressed as follows:
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where NQ nQ E nQ nQ is Geometric series and its
summation equal
nQ nQ
p NQ

So,
naQ nQ nQ
n n P NQ

no nQ
n N

nQ p nNQ

nQ AQ
hon

where 0 O is the moment generating function of the Geometric distribution.
4.5 Computing the Moments from the Moment Generating Function

4.5.1 The Expected Value of Truncated Geometric Distribution :
We have: Ow U ™
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where 0 O is the moment generating function of the Geometric distribution.

Therefore,

Owﬁm G pofn Om o R D om
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n n
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np n P N
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P N PN
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p ®n n ® O A
P N P N
p O 1 QN
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This result identical to equation (4.11).

A
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4.5.2 The Variance of Truncated Geometric Distribution
Now, to obtain the variance of truncated Geometric distribution, we have:
oo 0 T

Thus,
6 0 —2 — one b p AQ O o
n n
¢ OAQ ® p AQ 0 o nQ nQ 0 o
where 0 O is the moment generating function of the Geometric distribution.
Therefore,
,‘ P > >
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n n 0 1
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Therefore,

Wi Ow O® h

Using the formulaof O @ and 'O & in equations (4.13) and (4.14) respectively, we

obtain
w 5 112 5
HOD 06 n & pn & b ph
n n N  p N
06 © AN
n
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4.6 Maximum Likelihood Estimation of Truncated Geometric Distribution

For a random sample of size n, the likelihood function is

0 Qw

57



n n
n B
n n 1
nnon ne h
Therefore,
0 A A A ot 8
The log-likelihood function is
/b ¢l dp fn &1ig R ¢ pl h3

Now, derivate the log-likelihood function with respect to g and equal equation to zero to

obtain the maximum likelihood estimator of g, jfiand AHUp 1 8

1/b g &dn ® pn Edrp
TN p N n n n
p ® pn aqp
P N n N n
d ® ¢n G ® pn p ddp N p N -
np N p N
@ © ¢n Gn ® pn p dp N p A m
G @ pn ¢ © don o wn o © p T IPY

equation (4.18) isa'Q degree polynomial in g, the maximum likelihood estimator of g, Ah

by the invariance property.
i © pn ¢ ® ofn o of o & p ™ 9 w
Now, a solution for Eq. (4.19) to obtain a closed form for the MLE of p is not possible.

However, the MLE can be obtained numerically by finding the roots of Eq. (4.19) using
Newton-Raphson iteration method.
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4.7 Simulation Study

A simulation study has been conducted to study the properties of the MLE of p of the
truncated Geometric distribution at different sample sizes (n=25,50,100,200,300,500)
when the true parameter equals (P=0.3). Figure (4.4) represents the sampling distributions
of the MLE estimate of p of the truncated Geometric distribution with a (red) solid line
while the dotted line represents the expected value of the distribution. Table (4.1) below
also represents the expected values and the standard errors of the estimate of p of the

truncated Geometric distribution with p=0.3 and truncation points (a=2 and b=7).
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Figure (4.4): Sampling Distribution of the Estimate of p of the Truncated Geometric Distribution

at Different Sample Sizes When the True Parameter p=0.3.
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Table (4.1): Expected Values and Standard Errors of the Estimate of p of the Truncated
Geometric Distribution at Different Sample Sizes When the True Parameter P=0.3 and
Truncation Points (a=2 & b=7).

Sample Size (n) Mean Standard Error
25 0.2976139 0.1091978
50 0.2997176 0.07675266
100 0.3001744 0.05410469
200 0.3001409 0.03789932
300 0.3000707 0.03085279
500 0.2998665 0.02394177

From Figure (4.4) and Table (4.1) above we can observe that the estimator of the
parameter p is unbiased because the mean of the distribution of fjHpproximately equal the
true parameter p at different sample sizes. As shown in the table above the standard error
of the estimator also decreases as the sample size increase (i.e. the estimator of the
parameter, fts consistent). This means that the MLE estimator of the truncated Geometric
distribution is unbiased and consistent estimator.
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Chapter 5

Conclusions And Recommendations

5.1. Introduction:

In this study we constructed inferences of some truncated distribution within exponential
family namely, the normal, the gamma and the geometric distributions to establish some
results that can be useful for the community when part of the community instead of the
complete community is the core of the study. Therefore, in this study we concentrated on
the distributions that belong to exponential family because we believe that they have
important applications in life testing and other fields. The truncated normal distribution has
wide applications in statistics and econometrics. For example, it is used to model the
probabilities of the binary outcomes in the probit model and to model censored data in the
Topit model. Other truncated distributions have many important applications in other

fields including studies of modeling survival times and quality control.

In our thesis we find the probability density functions of the truncated normal, gamma and
geometric distributions, their cdf, means, variances and their mgfs. We also attempted to

provide a good estimates for the parameters for each one.

5.2. CONCLUSIONS:
From all the discussion of this study the following conclusions can be drawn:

1 Using data from the truncated distributions we can draw inference on the
parameters and obtain estimators of the parameters of the original distributions.

1 To obtain a good estimators for the parameters of the original distribution based on
date from the truncated distributions we need to take large sample sizes from the
truncated community.

1 We can use numerical solution to find the estimators for the parameters of the
original distributions as long as we cannot find the closed form for the estimators.

1 We can use various mathematical and numerical methods to obtain the estimators
of the un-truncated distributions using data from the truncated distributions. For
example, Newton-Raphson method and others.

1 We derived in this study properties of three truncated distributions in doubly
truncation cases and we concluded the properties of single truncation as special

cases.
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5.3. Recommendations:
The truncated distributions are important to uses in many applications. Therefore, from this
study we can recommend the following:

1 Conduct more research and find other properties for truncated distributions that
discussed in this study. For example likelihood ratio and hypothesis tests on the
parameters and other inference.

1 Conduct more research on the applications of the results of this study on various
fields, especially economics, survival analyses, quality assurance and
environmental applications.

1 Conduct more research on other truncated distributions such as Cauchy, Weibull,
exponential, Poisson, beta and chi-squared.

1 Generalize the results of this study on the truncated distributions within the

exponential family.
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