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 داءـــإه

 إلى كل أحبائي و أصدقائي....................

 

  أحمل  ... إلى منعممني العطاء بدون انتظارمن كممو الله بالييبة والوقار... إلى من إلى
قطافيا بعد طول حان اسمو بكل افتخار... إلى من أرجو الله أن يمد في عمره ليرى ثماراً 

 انتظار... أبي العزيز.
  إلى ملاكي في الحياة... إلى ينبوع الصبر والتفاؤل والأمل... إلى من كان دعاؤىا سر

الرحمن... أمي  ... وحنانيا بمسم جراحي... إلى من أعطتني الحنان... وعممتني خشيةنجاحي
 الحبيبة.

  ...إلى من ممكت قمبي وروحي... إلى من شاركتني ىذه الحياة... و شاركتني التعب والعناء
 زوجتي الغالية. 

 . إلى أغمى ما أممك في ىذه الدنيا... إلى سر سعادتي... ملاكي الصغير محمد 
 لنوايا الصادقة... إلى إلى أصحاب القموب الطاىرة الرقيقة... إلى أصحاب النفوس البريئة وا

 رياحين حياتي...  إخوتي و أخواتي. 
 الإخوة الذين لم تمدىم أمي... إلى من تحموا بالإخاء, وتميزوا بالوفاء والعطاء...إلى من  إلى

 .تذوقت معيم أجمل المحظات... أصدقائي
 .إلى أساتذتي الموقرين الذين لم يبخموا عمى بالعطاء 
  ىذا العمل.إلى كل من ساعدني في أنجاز 

 

 إلى كل ىؤلاء اىدي ىذا الجيد المتواضع,,,,,,
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Abstract 

 

Results of studies that are based on the entire population cannot be applied on only a 

particular class of the society that possesses specific characteristics. The results of such 

studies will be inaccurate because of the negative influence of certain elements of society 

on the study group or non-importance of some elements of the society that can be 

neglected. Some conditions can be placed on the population so that the non-important part 

of the society can be trimmed if that part is outside the interest of the researcher. However, 

placing such conditions on the community, the data would not follow the same distribution 

of entire community. Hence, we need to find the distributional characteristics of the 

truncated data including the probability density functions and estimation of the  parameters 

for the truncated distributions. This can be done for specific class distributions.  

In this thesis we discuss the distributional properties of and make statistical inference on 

the parameters of some truncated distributions among the exponential family such as the 

normal distribution, the Gamma distribution, and the Geometric distribution. Such 

probability distributions have different applications especially in economics and 

environmental applications.  

Therefore, we find the distributional properties and the estimates of the parameters of the 

normal distribution, the Gamma distribution, and the Geometric distribution. Finally,  

simulation studies were conducted to check the results obtained in this thesis. 
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òƢǂǄ 

 عمى النتائج ىذه تطبيق يتطمب بأسره مجتمع عمى نتائجيا تقوم التي الدراسات بعض ىناك
 عمى الدراسات تمك نتائج تطبيق الخطأ ومن لمدراسة، مطموبة خصائص تمتمك المجتمع من محددة فئة
 عناصر لبعض السمبي التأثير بسبب دقيقة غير نتائج يعطي سوف فيذا فقط، المجتمع من الفئة ىذه

 حاجة ىناك تكون قد لذلك إىماليا، يمكن والتي المجتمع مفردات بعض أىمية عدم بسبب المجتمع،
 من اليام غير الجزء اقتطاع يتم أن عمى الدراسة موضوع يلائم لمدراسة مجتمع لإنتاج المجتمع لبتر

 فميس الحالة ىذه وفي الباحث، اىتمام خارج أو البحث نطاق خارج الجزء ىذا كان إذا خاصة المجتمع
  إيجاد إلى بحاجة فإننا لذلك. الأصمي المجتمع توزيع نفس المبتور الدراسة مجتمع يتبع أن المؤكد من

 لمتوزيعات المعالم وتقدير الاحتمالية الكثافة ذلك في بما المقطوعة لمبيانات الاحتمالية الخصائص
 .محددة فئة من لتوزيعات ذلك يتم أن يمكن حيث المبتورة

لتوزيعات المبتورة ضمن عائمة التوزيعات الآسية ا  مناقشة الأطروحة إلىىذه  وقد تطرقنا في
الاقتصادية والبيئية واخترنا من ضمن عائمة  في المجالاتلما ليا من تطبيقات كثيرة ومتنوعة خاصة 

التوزيعات الآسية التوزيع الطبيعي المبتور وتوزيع جاما المبتور والتوزيع اليندسي المبتور. وأوجدنا 
 دير المعالم ودراسة تحاكي ىذه التوزيعات.     بعض الخصائص الإحصائية وتق

 والتوزيعجاما  توزيعالطبيعي و  لمتوزيع لماالمعالإحتمالية وتقدير  الخصائصولذلك تم إيجاد 
 ىذه في تم الحصول عميياالتي  النتائجدقة  من متحققل محاكاة دراسات أجريت وأخيراً،اليندسي 
 .الأطروحة
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Chapter 1 

Introduction 

1.1.  Rationale: 

Frequently, we need to impose upper or lower limits on the x-axis of standard unbounded 

probability distributions to better represent recorded variables which are constrained in 

their magnitude range because of some physical bounding process. For example, 

exponential distributions can give reasonable first approximation to histograms of raindrop 

diameters, but a truncated exponential distribution might be utilized to allow for the 

physical reality of an upper limit to raindrop size while still maintaining the approximate 

exponential form. A distribution bounding in this way is distinct from bounding that results 

from censored observations which cannot be recorded beyond a certain magnitude. 

A truncated distribution is a conditional distribution resulting when the domain of the 

parent distribution is restricted to a smaller region. A truncated distribution occurs when 

there is no ability to know about or record events occurring above or below a set threshold 

or outside a certain range.  

Truncated data is an acceptable commonplace occurrence in the field of reliability, when 

the variable of interest is related to failure rates of items. Truncation is different than 

censoring. With censoring, knowledge of items outside the restricted range is retained, but 

the full information is unable to be recorded. With truncation, knowledge of items outside 

the restricted range cannot be obtained. An example of truncation from manufacturing 

occurs when a sample of items is selected to be studied from a population that has already 

had items removed due to a failure to meet the set requirements. Another example of 

truncation is the population of standardized test scores. Standardized tests, such as the 

SAT, are designed to be normally distributed with a known mean and variance. 

Universities and colleges have established minimum requirements for admittance, creating 

a population of SAT scores with part of the lower tail of the distribution missing. 

The familiar text-book on truncated distributions are natural choices for representing data 

with censoring beyond threshold values . However, their value for representing situations 

with a physical upper or lower bound is more questionable because the mathematical 

truncation process creates finite probability density at the bounds. In reality it would be 
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more likely that environmental bounding processes such as raindrop break-up or maximum 

storm precipitation limitation will progressively increase in intensity as the bound is 

approached, giving rise to observation frequencies which decline progressively to zero at 

the bound.  

One approach would be to discard the original unbounded distribution altogether and 

replace it with an existing flexible bounded distribution such as the beta distribution which 

include unimodal forms declining to zero at the bounds. It is likely, however, that the 

original unbounded distribution would have had some history of successful data fitting in 

the field and the users would prefer to modify this distribution so as to incorporate an 

upper or lower bound. For this situation, it would be helpful to have an alternative 

truncation procedure available such that the resulting bounded distributions possess 

probability density declining to zero as the bounds are approached.  

1.2.  Research problem: 

Results of studies that are based on the entire population cannot be applied on studies of 

only a particular class of the society that possesses specific characteristics. The results of 

such studies will be inaccurate because of several reasons, including damage to some 

elements of society, especially if the study was related to economic resources or negative 

influence of certain elements of society on the subject of the study group or non-

importance of some elements of society which can be neglected. It was suggested that 

certain conditions can be placed on the society so that the non-important part of the society 

should be truncated for the study. This is because that part of the population may be 

outside the interest of the study or may have a negative impact on the community, which 

reduces the efficiency and accuracy of the results. But after placing conditions on the 

community, we cannot say that the data follow the same distribution of entire community. 

Hence, we need to find the distributional characteristics of the truncated data including the 

probability density functions and estimation of the  parameters for the truncated 

distributions. This can be done for specific class distributions.  

In this study the research problem is to discuss the distributional properties of some 

truncated distributions among the exponential family such as the Normal distribution, the 

Gamma distribution and the Geometric distribution for their important applications 

especially in economics and environmental applications and make statistical inference on 

the parameters of these distributions.  
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1.3.  Research objective: 

The aim of  this study is to make inferences on some distributions which belong to the 

exponential family and truncated at boundary points in order to propose more accurate 

distributions that can be applied on certain studies and useful for researchers in different 

fields. To achieve this goal, this study introduces:  

1. Inference on the truncated Normal distribution which is extensively covered in the 

literature as the main distribution in applied statistics. 

2. Inference on the truncated Gamma distribution as a special case of the continuous 

distributions within the exponential family. 

3. Inference on the truncated Geometric distribution as a special case of the discrete 

distributions within the exponential family. 

4. Relevant recommendations based on the above results will be given. 

In the inference to be made on any of those distributions the doubly truncated probability 

distribution functions and their cumulative distribution functions will be given. The 

moments, moment generating functions and the parameter estimation of the doubly 

truncated distributions will be studied. Some simulation studies that illustrate all the above 

results will also be presented.  

1.4.  Research Methodology : 

We first discuss inference on the truncated Normal distribution as the main distribution 

that has been most extensively covered in the literature and possesses the widest 

applications. Then we try to use similar methodology on truncated distributions for 

members of the exponential family. The doubly truncated distribution of two other 

distributions from exponential family, one is continuous (the Gamma distribution) and the 

other is discrete (the Geometric distribution), were selected for further investigation. In 

both distributions we derive the probability distribution function, the moment generating 

function and the estimation of the parameters. Finally, a simulation study for the results has 

been conducted using the R statistical software. 

1.5.  Literature review:  

In this section we discuss briefly some previous studies which introduce the truncated 

distribution within exponential families, specially the Normal, Gamma and Geometric 

distributions and some papers that help us to obtain the results of this study. The majority 

of papers concentrated on the problem of estimation of parameters of right or left truncated 
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distributions mainly the Normal distribution and the application of different truncated 

distributions. A very few studies looked at other truncated distributions and other 

characteristics of those truncated distributions and other inference on them such as their 

moments and hypothesis testing.  Previous studies on the truncated distributions can be 

summarized as follows. 

Pearson and Lee (1908), presents method of moments estimation for the truncated Normal 

distribution, based on estimating ‘ and „ from a random sample of normal data where the 

number of observations and values in the truncated region were known. Cohen (1949), 

attempt to find solution in a closed form of the maximum likelihood equations of Normal 

truncated distributions but he failed to find it. Cohen (1950), suggested Newton- Raphson 

(NR) method as a numerical solution to maximum likelihood equations that has no solution 

in closed form and suggested that the initial values for the NR optimization should be the 

sample moments. Halperin (1952), points out that Cohen relies on rough estimates for the 

starting values, which can cause problems with the estimates converging too quickly in the 

Newton- Raphson method, cautions against using sample moments because the NR 

optimization tended to stay at the starting values. The estimates with more than one 

iteration through the NR optimization process were considered. Johnson and Thomopoulos 

(2002) indicated that although Normal data have high utility, situations occur where the 

infinite range, ὢᶰ ÐȟÐ , can cause problems when estimating and inferring back to the 

population. Hattaway (2010) studied the parameter estimation and hypothesis testing for 

the truncated normal distribution with applications to introductory statistics grades. 

Abramowitz and Stegun (1965) presented a Handbook that has been designed to provide 

scientific investigators with a comprehensive and self-contained summary of the 

mathematical functions that arise in physical and engineering problems. The well-known 

tables of functions of Jahnke and Emde has been invaluable to workers in these fields in its 

many editions during the past half-century. The last volume extended the work of these 

authors by giving more extensive and more accurate numerical tables, and by giving larger 

collections of mathematical properties of the tabulated functions. The number of functions 

covered has also been increased. Johnson and Kotz (1970), studied a wide range of 

continuous univariate distributions and included some of properties of the truncated 

distributions. Barndorff-Nielsen (1978) gave a set of general conditions for the existence 

and the uniqueness of the maximum likelihood estimator in a minimal exponential family. 
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Tiku (1989) suggested a work around using standardization and using approximations to 

the standard normal density function ‰ and distribution function  . Evans, et al. (2000) 

provided a concise summary of the salient facts and formulas relating to 40 major 

probability distributions, together with associated diagrams that allow the shape and other 

general properties of each distribution to be readily appreciated and gave a concise 

statement of leading facts relating to 40 distributions and included diagrams so that shapes 

and other general properties may readily be appreciated. Olver, et al. (2010) provided a 

reference tool for researchers and other users in applied mathematics, the physical 

sciences, engineering, and elsewhere who encounter special functions in the course of their 

everyday work. 

Broeder (l955), studied the estimating of the parameters of truncated gamma distribution 

by method of moments and finding the maximum likelihood equations. Chapman (l956) 

presented a new procedure to estimate the parameters of truncated gamma distribution by 

least-squared estimation instead the method of moments and the maximum likelihood. 

Hegde and Dahiya (1989) presented the estimation of the parameters of a truncated gamma 

distribution. Thomas P. Minka (2002) derived a fast algorithm for maximum likelihood 

estimation of both parameters of a Gamma distribution or negative-binomial distribution. 

Zaninetti (2014), presents a right and left truncated gamma distribution with application to 

the stars that introduces an upper and a lower boundary to this distribution. The parameters 

which characterize the truncated gamma distribution are evaluated. A statistical test is 

performed on two samples of stars. A comparison with the lognormal and the four power 

law distribution is made.  

Thomasson and Kapadia (1968) concerned with the use of the maximum likelihood in 

estimating the parameter of the geometric distribution from samples of the distribution. 

Kapadia and Thomasson (1971) concerned with the use of the method of moments in 

estimating the parameter of the geometric distribution from samples of the distribution. 

1.6.  Organization of the thesis: 

In the next chapter (Chapter 2) we will discuss in details some inference on the truncated 

normal distribution and this chapter is divided into four main parts : 

¶ The distribution function of the truncated normal distribution. 

¶ The mean and variance of the truncated normal distribution. 

¶ Estimating of the parameters of the truncated normal distribution. 
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¶ Simulation study on the results of this distribution 

In chapter 3, we will discuss in details inference on the truncated gamma distribution, and 

this chapter is divided into four major sections :  

¶ The distribution function of the truncated gamma distribution. 

¶ The moments of the truncated gamma distribution. 

¶ Estimating of the parameters of the truncated gamma distribution. 

¶ Simulation study on the results of this distribution. 

In chapter 4, we will discuss in details inference on the truncated geometric distribution, 

and this chapter is divided into four main sections :  

¶ The distribution function of the truncated geometric distribution. 

¶ The moments of the truncated geometric distribution. 

¶ Estimating the parameters of the truncated geometric distribution. 

¶ Simulation study on the results of this distribution. 

In Chapter 5, we present some conclusions, recommendations, and suggest some 

prospective topics for further research. 
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Chapter 2 

Inference on the Truncated Normal Distribution 

 

2.1 Introduction : 

A truncated distribution is defined as a conditional distribution that results from a parent 

distribution and restricted to a smaller region. It occurs when there is no ability to know 

about or record events that occurs above or below a set threshold or outside a certain range. 

Truncation is different than censoring. With censoring, knowledge of items outside the 

restricted range is retained, but the full information is unable to be recorded. With 

truncation, knowledge of items outside the restricted range cannot be obtained. 

Let ὢ be a random variable from a distribution with a probability density function, Ὢὢ , a 

cumulative distribution function, Ὂὢ , and the range of the support ÐȟÐ . The density 

function of ὢ given the restriction that ὥ  ὢ  ὦ is 

Ὢὢȿὥ  ὢ  ὦ

Ὢὢ

Ὂὦ Ὂὥ
          ὥ  ὢ  ὦ

π                             έὸὬὩὶύὭίὩ

Ȣ                                 ςȢρ 

(See Hattaway, 2010). Because Ὢὢȿὥ  ὢ  ὦ is scaled up to account for the 

probability of being in the restricted support, Ὢὢȿὥ  ὢ  ὦ is a density function. The 

restriction can occur either on a single side or on both sides of the range. Truncation that 

occurs on a single side of the range is called singly truncated and on both sides of the range 

is called doubly truncated. When the truncation occurs at the upper (or right) end of the 

support range, this is called truncation from above. When the truncation occurs at the lower 

(or left) end of the support range, this is called truncation from below. 

2.2 Truncated Normal Distribution 

The Normal distribution is a commonly used distribution in nature, education, and business 

data, which are mounded or have a bell shape curve, are easily found across various fields 

of study. This is often due to the central limit effects, where a measurement is the mean of 

a collection of random effects. Johnson and Thomopoulos (2002) indicated that although 

normal data have high utility, situations occur where the infinite range, ὢᶰ ÐȟÐ , can 

cause problems when estimating and inferring back to the population. 

Applying equation (2.1) to the normal density function, the truncated Normal density 

function takes the form: 
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Ὢὢ
Ὡ

Ѝς“„Ȣὖὣᶰ ὥȟὦȿ ȟ„
ȟ                                                  ςȢς 

 

(see Hattaway, 2010), where the function: 

ὖὣᶰ ὥȟὦȿ ȟ„
ρ

Ѝς“„
Ὡὼὴ

ώ ‘

ς„
Ὠώ                           ςȢσ 

scales the distribution. This scaling factor can be interpreted as the probability of being in 

the restricted range ὥȟὦ for a given   and „ . The value ρ ὖὣᶰ ὥȟὦȿ ȟ„  is the 

percent Ϸ  truncation of the distribution. If the distribution function of the standard 

normal distribution, denoted by  Ȣ, is available then 

ὖὣᶰ ὥȟὦȿ‘ȟ„  
ὦ ‘

„
 
ὥ ‘

„
Ȣ                                      ςȢτ 

Figure 2.1 shows a graph of various density functions of a left truncated Normal 

distribution with truncation point a = 0 and having different values of mean ‘ but fixed 

value of „ = 1. The shape of the distribution changes as different values for ‘ are 

considered. 

 

Figure (2.1) : Different Density Functions of Left Truncated Normal Distributions with 

Different Values of Mean ‘ and Fixed Value of „ = 1 

 



9 

 

Figure 2.2 illustrates a graph of various density functions of a left truncated Normal 

distribution with truncation point ὥ = 0 and having different values of standard deviation „ 

but fixed value of mean at ‘ = 1. The distribution flattens when larger values for „ are 

considered. 

 

Figure (2.2) : Different Density Functions of Left Truncated Normal Distributions of 

Different Values of Standard Deviation „ and Fixed Value of Mean at ‘ = 1 

 

Johnson and Kotz (1970) provided the expected value of a doubly truncated Normal 

random variable ὢ at the truncation points [a,b] as 

Ὁὢ ‘ „
‰
ὥ ‘
„ ‰

ὦ ‘
„

 
ὦ ‘
„  

ὥ ‘
„

 ȟ                                                           ςȢυ 

where  ‰Ȣ is the density function of the standard Normal distribution. The expected value 

is equal to ‘ plus an adjustment for the truncation on the distribution. This adjustment 

shifts the expected value  Ὁὢ into the appropriate tail based on the truncation. For 

example, when there is more truncation on the lower portion of the domain than the upper, 

then Ὁὢ shift into the upper tail. 
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  Johnson and Kotz (1970) also provided the variance of a truncated Normal random 

variable ὢ at the truncation points ὥȟὦ as 

ὠὥὶὢ ρ

ὥ ‘
„ ‰

ὥ ‘
„

ὦ ‘
„ ‰

ὦ ‘
„

 
ὦ ‘
„  

ὥ ‘
„

‰
ὥ ‘
„ ‰

ὦ ‘
„

 
ὦ ‘
„  

ὥ ‘
„

„Ȣ                                                         ςȢφ 

 

Like the expected value, the variance of ὢ is adjusted for the truncation. When there is 

symmetric truncation, that is ὥ ‘ ὦ ‘  the expected value and variance of ,‏

a truncated Normal random variable ὢ are 

 

Ὁὢ ‘                                                                             ςȢχ 

 

ὠὥὶὢ ρ
ς‏‰‏

ς ‏ ρ
„Ȣ                                       ςȢψ 

 

Often the goal is to make inference back to the original population and not on the truncated 

population that is sampled. This means that the inference is made on ‘ and not ὉὢȢ 

2.3 Estimation of the parameters of the truncated Normal distribution 

Consider the maximum likelihood estimators (MLE) and the method of moments (MoM) 

estimators for the doubly truncated Normal distribution at the truncation points ὥȟὦ. This 

distribution is also referred to as a "positive" Normal distribution. Without loss of 

generality, the symmetric nature of the Normal distribution permits changing truncation to 

match a left truncated distribution. For a right truncated distribution, a new variable would 

need to be defined as ὢǋ  Ὕᶻ ὢȠ where Ὕᶻ is the point of truncation and ‘ᶻ Ὕᶻ ‘ 

will be the new parameter of interest. 

2.3.1 Maximum Likelihood Estimators 

The likelihood function for the doubly truncated Normal distribution at the truncation 

points ὥȟὦ is 

ὒ‘ȟ„ Ὢὼ
ρ

ὖὣᶰ ὥȟὦȿ ȟ„

ρ

Ѝς“„
Ὡ
В

                   ςȢω 
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The log-likelihood is then given by: 

ǎ‘ȟ„ ÌÎὒ‘ȟ„  

ὲÌÎὖὣᶰ ὥȟὦȿ ȟ„ ὲÌÎς“„
Вὼ ‘

ς„
 Ȣ              ςȢρπ 

Under normal circumstances, the maximum likelihood and the method of moments 

estimation procedures are straightforward. However, when dealing with a truncated 

Normal, the ὖὣᶰ ὥȟὦȿ ȟ„  term is part of the estimation. This probability is defined 

in (2.3) and (2.4), respectively, as 

‪‘ȟ„
ρ

Ѝς“„
Ὡ Ὠώȟ                                        ςȢρρ 

‪‘ȟ„  
ὦ ‘

„
 
ὥ ‘

„
Ȣ                                        ςȢρς 

The Lebesgue's Dominated Convergence Theorem (See Hattaway, 2010) states that 

 

‬

‬—
‰ᾀὨᾀ

‬

‬—
‰ᾀ Ὠᾀ 

 

under the condition that a dominating function Ὣὢ  exists for ‰ᾀ, which converges to a 

finite value. Interchanging differentiation and integration, the first derivate of (2.11) with 

respect to ‘ and „ are 

 

‪ǋ‘ȟ„
‬‪

‬‘
Ὡὼὴ

ώ ‘

ς„
ᶻ
ώ ‘

„Ѝς“
Ὠώȟ 

‪ǋ‘ȟ„
‬‪

‬„
Ὡὼὴ

ώ ‘

ς„
ᶻ
ώ ‘

„Ѝς“

ρ

„Ѝς“
ὨώȢ 

Using the derivatives above, the gradient (G) or the first partial derivative vector of 

(2.10) with respect to the parameters is 

 

'

ǎ

ǎ

Ὣ
Ὣ

ὲ
ǋ

ὲ‘ Вὼ

ὲ
ǋ В

                                 (2.13) 
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As Cohen (1949) points out, the problem of no closed-form solution to (2.13) means that 

solving G = 0 must be performed iteratively. Newton-Raphson is suggested by Cohen 

(1950), but Halperin (1952) points out that Cohen relies on rough estimates for the starting 

values, which can cause problems with the estimates converging too quickly in the 

Newton- Raphson method. 

The second derivatives of (2.11) needed for the Hessian are 

‪ǋǋ‘ȟ„
‬‪

‬‘
Ὡὼὴ

ώ ‘

ς„
ᶻ
ώ ‘

„Ѝς“

ρ

„Ѝς“
ὨώȢ 

‪ǋǋ‘ȟ„
‬‪

‬„
Ὡὼὴ

ώ ‘

ς„
ᶻ

ς

„Ѝς“

υώ ‘

„Ѝς“

ώ ‘

„Ѝς“
ὨώȢ 

‪ȟ
ǋǋ‘ȟ„

‬‪

‬‘„
Ὡὼὴ

ώ ‘

ς„
ᶻ
ώ ‘

„Ѝς“

σώ ‘

„Ѝς“
ὨώȢ 

Using the equations above and taking the derivatives of (2.13), the Hessian, or second 

derivative matrix of (2.10), is 

 

(

ụ
Ụ
Ụ
ợ
‬Ὣ

‬‘

‬Ὣ

‬„
‬Ὣ

‬‘

‬Ὣ

‬„Ứ
ủ
ủ
Ủ

 

ụ
Ụ
Ụ
Ụ
ợ ὲ

‪‪ǋǋ ‪ǋ

‪

ὲ

„
ὲ
‪‪ȿ

ǋǋ ‪ǋ‪ǋ

‪

ὲ‘ Вὼ

„

ὲ
‪‪ȿ

ǋǋ ‪ǋ‪ǋ

‪

ὲ‘ Вὼ

„
ὲ
‪‪ǋǋ ‪ǋ

‪

ςὲ

ς„

τВὼ ‘

ς„ Ứ
ủ
ủ
ủ
Ủ

Ȣ 

 

Iterating to find a solution is one of the problems with the MLE. The other problem is that 

numerical integration is required to evaluate ‪ ȟ‪  and  ‪  at each step of the iteration. 

Tiku (1989) proposed to work around using standardization and using approximations to 

the standard normal density function ‰ and distribution function  . 

The coding for the MLE has several integrals to be evaluated at each iteration of the 

Newton-Raphson (NR) method. These integrals rely on the integrate command in R. The 

NR optimization is done using the nlminb function in R. This function allows for user-

defined gradient and Hessian, instead of relying on numerical approximations to them. The 
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function nlminb also has an option to add bounds for the parameter estimates, preventing 

invalid parameter estimates. The downside to the nlminb function is that it is slower than 

other optimization functions in R, but the other built-in functions do not allow for user-

defined gradient, Hessian, and bound on the parameters. Attempts using them resulted in 

invalid parameter estimates with negative variances estimates, or the optimization function 

never deviated from the initial values. (See Hattaway, 2010). 

Cohen (1950) suggested that the initial values for the NR optimization should be the 

sample moments. Halperin (1952) cautioned against using sample moments because the 

NR optimization tended to stay at the starting values. The estimates with more than one 

iteration through the NR optimization process were considered. 

2.3.2 The Method of Moments Estimators 

The method of moments (MoM) estimation for the truncated Normal distribution has been 

done by Pearson and Lee (1908) based on estimating ‘ and „ from a random sample of 

normal data where the number of observations and values in the truncated region were 

known. Cohen (1949) illustrated that these estimators are similar to the MLE and share the 

same problem of relying on iterative solutions to find the estimates. Pearson and Lee 

(1908) stated that the MoM estimates take the forms: 

  

‘Ƕ ὼ Ὤǋ„ 

„
ρ

ὲ
ὼȢ‪  

‪
ὲВὼ Вὼ

Вὼ
 

 

where Ὤǋ  is the point of truncation measured in standard units of the population and 

‪  and  ‪  are moment functions of Ὤǋ. Here ‪  is dependent on tables and the calculated 

values of Ὤǋ and  ‪ . Cohen (1949) indicated that the MoM equations derived by Pearson 

and Lee (1908) are equivalent to the MLE equations derived by Fisher (1930). 

Applying the suggestions of Tiku (1989) for the MLE, the MoM estimators are modified to 

be 

‘Ƕ ‘ Ѝ„‗‌                                                                                       (2.14) 

„ „ ρ ‌‏                                                                                      (2.15) 
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where  ‌ ,    ‗‌
 

   and   ‏‌ ‗‌ ‗‌ ‌Ȣ  

Solving (2.14) and (2.15) using the sample moments, the MoM estimates are 

%8 ʈ ʎʇɻ
ВØ

Î
 

ʈ ʎʇɻ Ø                                                                                     (2.16) 

6ÁÒ8 %8 %8  

ʎ ρ ɿɻ ʈ ςʈʎʇɻ ʎʇ ɻ
В

Ȣ                 (2.17) 

The lack of a closed-form solution means that the MoM estimators must be found using an 

iterative approach. Uses Newton-Raphson to find the estimators. The code minimizes the 

parameters while solving (2.16) and (2.17) simultaneously. Like with the MLE code, the 

sample moments were used as the initial estimates for Newton-Raphson. (See Hattaway, 

2010). 

2.4 Simulation Study 

Figure (2.3) presents various parameter combinations with a truncation point at 0. The 

different ‘ and „ combinations shown in Figure (2.3) provide a visual representation of the 

distributions of interest. Combinations with larger values of „ spread out and flatten. The 

flattening effect makes distinguishing distributions with different values of ‘ and the same 

values of „ hard. From Figure (2.3) the remaining parameter combinations reflect 

differences in the amount of truncation and not on particular values of ‘ and „. 

 

Figure (2.3) : Different Density Functions of Left Truncated Normal Distributions 
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Figure (2.4) : Bias For ‘ of Left Truncated Normal Distributions 

Figure (2.4) presents graph of bias for ‘ for the different parameter combinations. The 

percent truncation for each parameter combination is found in parentheses next to the 

parameter combination. Figure (2.4) shows that the bias for ‘Ƕ shrinks as the sample size 

increases. 

 

Figure (2.5) : MSE For ‘ of Left Truncated Normal Distributions 
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Figure (2.5) presents graph of MSE for ‘ for the different parameter combinations. The 

percent truncation for each parameter combination is found in parentheses next to the 

parameter combination. Figure (2.5) shows the MSE for ‘Ƕ. The performance of the 

‘ τȟ„  ρ combination is as expected for both the MLE and MoM estimators. The 

MLE for the ‘ πȟ„  ρ  combination had a relatively small MSE, but the MoM 

estimator had a larger MSE that failed to converge to 0 with an increasing sample size. The 

only other estimator that failed to converge to 0 was the MoM estimator for the ‘

ς ÁÎÄ  „  ς combination. The other estimators had MSE's that converged to 0. The 

15.87% truncated parameter combinations had larger variability for the MLE at the small 

n, but as n increased, the MSE converged to 0. Even though the ‘ ςȟ„  ρ  

combination had near zero bias for ‘Ƕ for the different sample sizes of n, the MSE was large 

for the small sample sizes. 

 

Figure (2.6) : Bias For „ of Left Truncated Normal Distributions 

Figure (2.6) presents a graph of the bias for „ for the different parameter combinations of 

left truncated Normal distributions. The percent truncation for each parameter combination 

is found in parentheses next to the parameter combination. Figure (2.6) depicts the bias for 

„ of the left truncated normal distributions from the simulation study. The MLEs for „ had 

a negative bias as expected, but they perform remarkably well in each of the 5 cases 
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studied having a near 0 bias. The MoM estimator for „ for the ‘ τ ÁÎÄ  „  ρ 

combination again performed as expected, but the other MoM estimators had significant 

negative biases. The MoM estimator for the ‘ ςȟ„  ρ combination had the smallest 

bias, converging to about -0.05. 

 

Figure (2.7) : MSE For „ of Left Truncated Normal Distributions 

Figure (2.7) presents graph of MSE for „ for the different parameter combinations. The 

percent truncation for each parameter combination is found in parentheses next to the 

parameter combination. Figure (2.7) shows the MSE for „. The MLEs behave in a similar 

fashion as did the MLEs for ‘Ƕ. There is less variability in the estimators, but the higher 

MSE is present for the two 15.87% truncation parameter combinations. The MoM 

estimators for „ behave like those for ‘Ƕ when the percent truncation is small, but at higher 

levels of truncation, they have larger MSE. 
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Chapter 3 

Inference on the Truncated Gamma Distribution 

3.1 Introduction 

The truncated Gamma distribution is an important distribution and of interest to many 

researchers due to its applications in life testing and reliability problems. Broeder (l955), 

Chapman (l956), and Gross (l971) are some of the other recent papers which studied 

estimating the parameters of a truncated Gamma distribution. Barndorff-Nielsen (1978), 

pages 150-160, gave a set of general conditions for the existence and the uniqueness of the 

maximum likelihood estimator in a minimal exponential family. It becomes clear from a 

review of the literature that the estimation problem in the case of two-parameter truncated 

Gamma distribution needs to be studied in greater depth.  

In this chapter, we are going to study the truncated Gamma distribution in details and give 

the probability distribution function (pdf) and the cumulative probability distribution 

function (cdf) for the truncated Gamma distribution and will show the shape of those 

functions. We will also study the moments and the moment generating function of the 

distribution. Finally, we are going to study the estimation problems of the parameters of 

the truncated Gamma distribution and attempt to give reliable estimators of its parameters.  

In all the discussions below we study only the two-parameter truncated Gamma 

distribution as it is the general form and discuss the truncated distribution from both the 

left and right (the doubly truncated case). 

3.2 The Gamma Distribution  

Let ὢ be a random variable taking values in the interval πȟ  following the Gamma 

distribution. The pdf can then be expressed as : 

ὪὼȠ‌ȟ‍

ὼ
‍

Ὡ

‍ῲ‌
ȟ                                                                  σȢρ  

where  

ῲί ὸ Ὡ
Ð

Ὠὸȟ                                                                    σȢς 

is the Gamma function, formula (3.1) above with  ‍ π is the scale and ‌ π is the 

shape. (See Johnson, et. al., 1994). Its expected value is  

ὉὢȠ‌ȟ‍ ‌‍ȟ                                                                    σȢσ 
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and its variance is 

ὠὥὶὢȠ‌ȟ‍ ‌‍Ȣ                                                                    σȢτ 

The cdf is denoted by:  

ὊὼȠ‌ȟ‍
‎‌ȟ

ὼ
‍

ῲ‌
ȟ                                                                    σȢυ 

where  ‎ίȟὼ is the lower incomplete Gamma function and is given by: 

‎ίȟὼ ὸ Ὡ Ὠὸ Ȣ                                                                    σȢφ 

Note that the term ῲίȟὼ  is known as the upper incomplete Gamma function. See 

Abramowitz and Stgun, (1965) and Olver, et al., (2010) and is given by: 

ῲίȟὼ ὸ Ὡ
Ð

Ὠὸȟ 

              ῲί ‎ίȟὼȟ 

by integration by parts, we can expressed ῲίȟὼ as   

ῲίȟὼ ί ρῲί ρȟὼ ὼ                                             σȢχ 

The mode is at  

άὼȠ‌ȟ‍ ‌‍ ‍   ύὬὩὲ ‌ ρȢ                                            σȢψ 

(See Zaninetti, 2014). 

The two parameters of the distribution can be estimated through the method of moments 

(MoM) by matching the moments to obtain the following estimates : 

‌
ὼӶ

ί
ȟ                                                                    σȢω 

‍
ί

ὼӶ
ȟ                                                                   σȢρπ 

where ὼӶ and ί are the sample mean and the sample variance, respectively.             (See 

Evans, et al. 2000). 

The maximum likelihood estimators (MLE)  of the parameters of Gamma distribution are  

‌
ρ

ςὰὲὼӶ
В ὰὲὼ
ὲ

ȟ                                                   σȢρρ 

‍ ςὼӶὰὲὼӶ
В ὰὲὼ

ὲ
Ȣ                                                    σȢρς 

(See Thomas P. Minka, 2002) . 
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3.3 The distribution function of the truncated Gamma  

3.3.1 The Probability Density Function 

Let ὢ be a random variable having the truncated Gamma distribution and taking values in 

the interval ὥȟὦ. The truncated pdf of any variable takes the form:  

ὪὼȠ‌ȟ‍ȿὥ ὢ ὦ
ὪὼȠ‌ȟ‍

᷿ὪὼȠ‌ȟ‍Ὠὼ
 

(See Block, et. al., 2010). 

                                  
ὪὼȠ‌ȟ‍

ὊὼȠ‌ȟ‍ȿ
ȟ                                                    σȢρσ 

ὪὼȠ‌ȟ‍ȟὥȟὦ
ὪὼȠ‌ȟ‍

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍
Ȣ                                     σȢρτ 

The pdf of the truncated Gamma distribution then takes the form: 

 ὪὼȠ‌ȟ‍ȟὥȟὦ  

ὼ
‍

Ὡ

‍ῲ‌
‎‌ȟ

ὦ
‍

ῲ‌

‎‌ȟ
ὥ
‍

ῲ‌

 

                                 

ὼ
‍

Ὡ

‍‎‌ȟ
ὦ
‍

‎‌ȟ
ὥ
‍

ȟ                                     σȢρυ 

Using  the property  ‎ίȟὼ ῲί ῲίȟὼȟ we obtain  

 

ὪὼȠ‌ȟ‍ȟὥȟὦ

ὼ
‍

Ὡ

‍ῲ‌ ῲ‌ȟ
ὦ
‍

ῲ‌ ῲ‌ȟ
ὥ
‍

 

ὼ
‍

Ὡ

‍ῲ‌ȟ
ὥ
‍

ῲ ‌ȟ
ὦ
‍

ȟ                                                σȢρφ   

ὪὼȠ‌ȟ‍ȟὥȟὦ ὑ
ὼ

‍
Ὡ ȟ                                               σȢρχ 

where the constant K is  
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ὑ
ρ

‍ῲ‌ȟ
ὥ
‍

ῲ ‌ȟ
ὦ
‍

Ȣ                                                  σȢρψ  

 

In Figure (3.1), we present the shape of the truncated Gamma distribution function using 

formula (3.17) with a (blue) dashed line together with the distribution of a simulated 

sample of 1000 observations generated from the truncated Gamma distribution with a (red) 

solid line and superimposed on the empirical distribution generated from the Gamma 

distribution using formula (3.1) with a (black) solid line. However, Figure (3.2) presents 

the shape of the same distributions of truncated gamma distribution function using formula 

(3.17) together with the distribution of a simulated sample of 1000 observations but this 

time generated from the Gamma distribution then truncated by omitting values outside the 

truncation range with a (red) solid line and superimposed on the empirical distribution 

generated from the Gamma distribution using formula (3.1) with a (black) solid line. It is 

clear that the empirical distribution and theoretical  one generated from formula (3.17) are 

identical. 

 
Figure (3.1): Distribution of Data Truncated from Generated Original Gamma (alpha=5, 

beta=10) 
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Figure (3.2): Distribution of Data Truncated from Generated Gamma (alpha=5, beta=10) 

In Figure (3.3) present the shape of the truncated Gamma distribution function using 

formula (3.17) with different values of truncation points and we fix the right truncation 

point (b=70) and change the left truncation point (a=20,35,50) together with the original 

Gamma distribution with a (black) solid line. However, figure (3.4) present the shape of 

the truncated Gamma distribution function using formula (3.17) with different values of 

truncation points and we fix the left truncation point (a=30) and change the right truncation 

point (b=50,60,70,80) together with the original Gamma distribution with a (black) solid 

line .  
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Figure (3.3): Truncated Gamma Distribution (alpha=5, beta=10) 

 

 
Figure (3.4): Distribution of Generated Samples from Truncated Gamma (alpha=5, 

beta=10) 
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3.3.2 Special Cases  

1) Left Truncation Gamma Distribution : 

Let ὢ be a random variable having the truncated Gamma distribution and taking values in 

the interval ὥȟÐ. The truncated pdf of any variable takes the form (3.17) above. 

As we know ῲ‌ȟÐ ᷿ὸ Ὡ
Ð

Ð
Ὠὸπȟ we obtain  

ὪὼȠ‌ȟ‍ȟὥ

ὼ
‍

Ὡ

‍ῲ‌ȟ
ὥ
‍

ȟ                                                   σȢρω 

ὼ Ὡ

‍ ᷿ὸ Ὡ
Ð

Ὠὸ

ȟ                                                  σȢςπ 

 

 

Let ὸ  ȟ  then Ὠὸ  and we have: 

ὸḊ
ὥ

‍
 O  Ð ᵼόḊὥ Ð 

ὪὼȠ‌ȟ‍ȟὥȟὦ
ὼ Ὡ

‍ ᷿
ό
‍

Ὡ
Ð

 
Ὠό
‍

 

ὪὼȠ‌ȟ‍ȟὥȟὦ
ὼ Ὡ

᷿ό Ὡ
Ð

 Ὠό

Ȣ                                        σȢςρ 

Formula (3.21) is identical to a result of (Koning and Franses, 2003). 

 

2) Right Truncation Gamma Distribution : 

Let ὢ be a random variable having the truncated Gamma distribution and taking values ὼ 

in the interval πȟὦ. The truncated pdf of any variable takes the form (3.16). Substituting 

ὥ π in (3.16) we get : 

ὪὼȠ‌ȟ‍ȟπȟὦ

ὼ
‍

Ὡ

‍ῲ‌ȟ
π
‍

ῲ‌ȟ
ὦ
‍

ȟ     

ὪὼȠ‌ȟ‍ȟὦ

ὼ
‍

Ὡ

‍ῲ‌ ῲ‌ȟ
ὦ
‍

ȟ     

Using  the property  ‎ίȟὼ ῲί ῲίȟὼȟ we obtain 
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ὪὼȠ‌ȟ‍ȟὦ
ὼ Ὡ

‍ ‎‌ȟ
ὦ
‍

ȟ                                                       σȢςς 

 

ὼ Ὡ

‍ ᷿ὸ Ὡ Ὠὸ

ȟ 

 

Let ὸ  ȟ then Ὠὸ   and we have: 

ὸḊπ O  
ὦ

‍
 ᵼόḊπ ὦ 

 

ὪὼȠ‌ȟ‍ȟὦ
ὼ Ὡ

‍ ᷿
ό
‍

Ὡ  
Ὠό
‍

 

 

ὪὼȠ‌ȟ‍ȟὦ
ὼ Ὡ

᷿ό Ὡ  Ὠό

Ȣ                                          σȢςσ 

Formula (3.23) is identical to equation (1) in Hegde and Dahiya (1989). 

3.3.3 The Cumulative Density Function  

The cdf of the truncated Gamma distribution take the form :  

ὊὼȠ‌ȟ‍ȟὥȟὦ ὪὼȠ‌ȟ‍ȟὥȟὦὨὼ 

ὑ
ὼ

‍
Ὡ Ὠὼ 

ὑ
ὼ

‍
Ὡ

Ð

Ὠὼ
ὼ

‍
Ὡ

Ð

Ὠὼ 

Let ὸ  ȟ then Ὠὸ  and we have: 

ὼḊὥ ÐᵼὸḊ
ὥ

‍
 O  Ð  

ὼḊὼ ÐᵼὸḊ
ὼ

‍
 O  Ð 

Thus we have,  

ὊὼȠ‌ȟ‍ȟὥȟὦ ὑ ὸ Ὡ
Ð

‍Ὠὸ ὸ Ὡ
Ð

‍Ὠὸ                     σȢςτ 

ὊὼȠ‌ȟ‍ȟὥȟὦ ὑ‍ῲ‌ȟ
ὥ

‍
ῲ‌ȟ

ὼ

‍
Ȣ                                               σȢςυ 
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Figure (3.5) presents the shape of the cumulative density function of the truncated Gamma 

distribution using  formula (3.25) together with the shape of a simulated sample of 1000 

observations generated from the truncated Gamma distribution with a (green) dashed line 

and superimposed on the empirical distribution generated from the Gamma distribution 

using formula (3.1) with a (black) solid line and Figure (3.6) present the shape of the 

cumulative density function of the truncated Gamma distribution using  formula (3.25) 

with different values of truncation points together with the cdf of  original distribution.   

 
Figure (3.5): Empirical CDF for Gamma Distribution (alpha=5, beta=10)  
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Figure (3.6): Empirical CDF for Gamma Distribution (alpha=5, beta=10) with 

truncation points a=20, b=70  

 

3.4 The Moments of the Truncated Gamma Distribution  

3.4.1 The Mean 

The expected value of truncated Gamma distribution is  

ὉὼȠ‌ȟ‍ȟὥȟὦ ὼὪὼȠ‌ȟ‍ȟὥȟὦὨὼ 

ὼὑ
ὼ

‍
Ὡ Ὠὼ 

ὑ‍
ὼ

‍

ὼ

‍
Ὡ Ὠὼ 

ὑ‍
ὼ

‍
Ὡ Ὠὼ 

ὑ‍
ὼ

‍
Ὡ Ὠὼ

ὼ

‍
Ὡ Ὠὼ

ÐÐ

 

 Let ὸ ᵼ Ὠὼ ‍Ὠὸ  

ὼȡὥᴼÐᵼ ὸȡ
ὥ

‍
ᴼÐ 

ὼȡὦO Ð ᵼὸȡ
ὦ

‍
ᴼÐȢ 
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Then  

ὉὢȠ‌ȟ‍ȟὥȟὦ ὑ‍ ὸὩ ‍Ὠὸ ὸὩ ‍Ὠὸ
ÐÐ

 

ὑ‍ ῲ‌ ρȟ
ὥ

‍
ῲ‌ ρȟ

ὦ

‍
                          σȢςφ 

Figure (3.2) presents the value of the mean of the truncated Gamma distribution function 

using formula (3.26) for the distribution mean and using a simulated sample and both 

illustrated on the truncated Gamma distribution function curves. The two means were 

found to be exactly identical as it appears only one mean in the figure. 

3.4.2 The Variance 

Now, to obtain the variance of truncated Gamma distribution  

ὉὢȠ‌ȟ‍ȟὥȟὦ ὼὪὼȠ‌ȟ‍ȟὥȟὦὨὼ 

ὼὑ
ὼ

‍
Ὡ Ὠὼ 

ὑ ὼ
ὼ

‍
Ὡ Ὠὼ 

ὑ‍
ὼ

‍

ὼ

‍
Ὡ Ὠὼ 

ὑ‍
ὼ

‍
Ὡ Ὠὼ 

ὑ‍
ὼ

‍
Ὡ Ὠὼ

ὼ

‍
Ὡ Ὠὼ

ÐÐ

 

  

Let ὸ ᵼ Ὠὼ ‍Ὠὸ  and we have: 

ὼȡὥᴼÐᵼ ὸȡ
ὥ

‍
ᴼÐ 

ὼȡὦO Ð ᵼὸȡ
ὦ

‍
ᴼÐ 

Then 

ὉὢȠ‌ȟ‍ȟὥȟὦ ὑ‍ ὸ Ὡ ‍Ὠὸ ὸ Ὡ ‍Ὠὸ
ÐÐ

 

ὑ‍ ῲ‌ ςȟ
ὥ

‍
ῲ‌ ςȟ

ὦ

‍
Ȣ                               σȢςχ 
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Therefore,  

ὠὥὶὢȠ‌ȟ‍ȟὥȟὦ ὉὢȠ‌ȟ‍ȟὥȟὦ ὉὢȠ‌ȟ‍ȟὥȟὦ Ȣ 
 

3.4.3 The □◄▐ moment :  

The ά  moment of the truncated Gamma distribution is  

Ὁὢ Ƞ‌ȟ‍ȟὥȟὦ ὼ ὪὼȠ‌ȟ‍ȟὥȟὦὨὼ 

ὼὑ
ὼ

‍
Ὡ Ὠὼ 

   

ὑ ὼ
ὼ

‍
Ὡ Ὠὼ 

ὑᶻ
‍

‍
ὼ

ὼ

‍
Ὡ Ὠὼ 

ὑ‍
ὼ

‍

ὼ

‍
Ὡ Ὠὼ 

ὑ‍
ὼ

‍
Ὡ Ὠὼ 

ὑ‍
ὼ

‍

 

Ὡ Ὠὼ
ὼ

‍
Ὡ Ὠὼ

  

 

 Let ὸ ᵼ Ὠὼ ‍Ὠὸ  

ὼȡὥᴼ ᵼ ὸȡ
ὥ

‍
ᴼ  

ὼȡὦO   ᵼὸȡ
ὦ

‍
ᴼ  

Then 

Ὁὢ Ƞ‌ȟ‍ȟὥȟὦ ὑ‍ ὸ Ὡ ‍Ὠὸ ὸ Ὡ ‍Ὠὸ
  

 

ὑ‍ ῲ‌ άȟ
ὥ

‍
ῲ‌ άȟ

ὦ

‍
Ȣ                              σȢςψ 
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3.4.4 The Mode of the Truncated Gamma Distribution : 

The mode of the truncated Gamma distribution is the value ὼ at which its pdf  has its 

maximum value . 

ὨὪὼȠ‌ȟ‍ȟὥȟὦ

Ὠὼ

Ὠ

Ὠὼ
ὑ
ὼ

‍
Ὡ  

ὑ

‍

Ὠ

Ὠὼ
ὼ Ὡ  

ὨὪὼȠ‌ȟ‍ȟὥȟὦ

Ὠὼ

ὑ

‍
‌ ρὼ Ὡ ὼ Ὡ

ρ

‍
ȟ 

Let  
Ƞȟȟȟ

πȟ we get  

ὑ

‍
‌ ρὼ Ὡ ὼ Ὡ

ρ

‍
π 

‌ ρὼ Ὡ ὼ Ὡ
ρ

‍
π 

‌ ρὼ Ὡ ὼ Ὡ
ρ

‍
 

‌ ρ ὼ
ρ

‍
 

ὼ ‍‌ ρ ‌‍ ‍ȟύὬὩὲ ‌ ρ                                    σȢςω 

Therefore, we get the mode of the truncated Gamma distribution at ὼ ‍‌ ρȢ  

 

3.5 The Moment Generating Function of the Truncated Gamma Distribution  

For random ὢ which follows a gamma distribution, ῲ‌ȟ‍ȟ the moment generating 

function (mgf) is given by  

ὓ ὸ ρ ‍ὸ ȟὸɴ πȟ
ρ

‍
Ȣ 

Now we consider ὣ a random variable which follows a doubly truncated version of ὢ with 

lower truncation point, ὥȟ and upper truncation point, Â . The mgf of ὣ is  

ὓ ὸ ὉὩ Ὡ ὪώȠ‌ȟ‍ȟὥȟὦὨώ 

Ὡ
ὪώȠ‌ȟ‍

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍
Ὠώ 

ρ

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍
Ὡ
ώ Ὡ

‍ῲ‌
Ὠώ 
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ρ

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍

ώ Ὡ

‍ῲ‌
Ὠώ 

ρ

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍

ώ Ὡ

‍ῲ‌
Ὠώ 

ρ

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍

ώ Ὡ

‍ῲ‌
ὨώȢ                        σȢσπ 

Multiply equation (3.30) by  ȟ we obtain  

ὓ ὸ
ρ ‍ὸ

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍

ρ ‍ὸώ Ὡ

‍ῲ‌
ὨώȢ 

Let ὶ ρ ‍ὸώȟ then  Ὠὶ ρ ‍ὸὨώ 

ώȡὥᴼὦ ᵼ    ὶȡρ ‍ὸὥ ρ ‍ὸὦ 

For  ὸɴ πȟ , we obtain 

ὓ ὸ
ρ ‍ὸ

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍

ὶ Ὡ

‍ῲ‌

Ὠὶ

ρ ‍ὸ
  

ρ ‍ὸ

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍

ὶ Ὡ

‍ῲ‌
Ὠὶ Ȣ 

ρ ‍ὸ

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍
Ὂὦρ ‍ὸȠ‌ȟ‍ Ὂὥρ ‍ὸȠ‌ȟ‍ Ȣ             σȢσρ 

Note that the (cdf) of Gamma distribution can be expressed as  

ὊὼȠ‌ȟ‍
‎‌ȟ

ὼ
‍

ῲ‌
ȟ 

ῲ‌ ῲ‌ȟ
ὼ
‍

ῲ‌
ȟ 

ρ
ῲ‌ȟ

ὼ
‍

ῲ‌
 Ȣ 
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Then we can rewrite that definition as 

Ὂὦρ ‍ὸȠ‌ȟ‍ Ὂὥρ ‍ὸȠ‌ȟ‍

ρ
ῲ‌ȟ

ὦρ ‍ὸ
‍

ῲ‌
ρ
ῲ‌ȟ

ὥρ ‍ὸ
‍

ῲ‌
ȟ 

ῲ‌ȟ
ὥρ ‍ὸ
‍

ῲ‌ȟ
ὦρ ‍ὸ
‍

ῲ‌
ȟ                       σȢσς 

Also we have,  

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍
ῲ‌ȟ

ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌
Ȣ 

Now, substituting equation (3.32) in equation (3.31), we obtain  

ὓ ὸ
Ὂὦρ ‍ὸȠ‌ȟ‍ Ὂὥρ ‍ὸȠ‌ȟ‍

ὊὦȠ‌ȟ‍ ὊὥȠ‌ȟ‍
ὓ ὸȟ 

ῲ‌ȟ
ὥρ ‍ὸ
‍

ῲ ‌ȟ
ὦρ ‍ὸ
‍

ῲ‌ȟ
ὥ
‍

ῲ ‌ȟ
ὦ
‍

ὓ ὸȢ                       σȢσσ 

Thus, the moment generating function of ὣ which follows a doubly truncated Gamma 

distribution equal the product of the moment generating function of a random variable ὢ 

which follows a Gamma distribution and a factor which accounts for the truncation . 

3.6 Computing the Moments from the Moment Generating Function 

3.6.1 The Expected Value : 

The expected value of the random variable ὣ is  

ὉὣȠ‌ȟ‍ȟὥȟὦ ὓǋὸȿ  
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ὓǋὸ
ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥρ ‍ὸ

‍
ῲ‌ȟ

ὦρ ‍ὸ

‍
ὓǋὸ

ὥρ ‍ὸ

‍
Ὡ ᶻ ὥ

ὦρ ‍ὸ

‍
Ὡ ᶻ ὦ ὓ ὸ  

ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥρ ‍ὸ

‍
ῲ‌ȟ

ὦρ ‍ὸ

‍
ὓǋὸ

ὥ ρ ‍ὸ

‍
Ὡ

ὦ ρ ‍ὸ

‍
Ὡ ὓ ὸ ȟ                                      σȢστ 

Thus we have:,   ὉὣȠ‌ȟ‍ȟὥȟὦ ὓǋὸȿ  

ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥ

‍
ῲ‌ȟ

ὦ

‍
ὓǋὸȿ

ὥ

‍
Ὡ

ὦ

‍
Ὡ ὓ ὸȿ  

ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥ

‍
ῲ‌ȟ

ὦ

‍
ὉὢȠ‌ȟ‍

ὥ

‍
Ὡ

ὦ

‍
Ὡ ρ ‍ὸ ȿ  

ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥ

‍
ῲ‌ȟ

ὦ

‍
‌‍

ὥ

‍
Ὡ

ὦ

‍
Ὡ  

‌‍

ở

Ở
ờ

ὥ
‍

Ὡ
ὦ
‍

Ὡ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

Ợ

ỡ
Ỡ

 

‌‍
ὥὩ ὦὩ

‍ ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

Ȣ 
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Ὁὢ
ὥὩ ὦὩ

‍ ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

Ȣ                         σȢσυ 

‌‍ῲ‌ȟ
ὥ
‍

‌‍ῲ‌ȟ
ὦ
‍

ὥὩ ὦὩ

‍ ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

 

ὑ‍ ‌‍ῲ‌ȟ
ὥ

‍
‌‍ῲ ‌ȟ

ὦ

‍
ὥὩ ὦὩ  

ὑ‌‍ῲ‌ȟ
ὥ

‍
‌‍ῲ‌ȟ

ὦ

‍
‍ ὥὩ ‍ ὦὩ  

ὑ‍ ‌ῲ‌ȟ
ὥ

‍
‌ῲ‌ȟ

ὦ

‍
‍ ὥὩ ‍ ὦὩ  

ὑ‍ ‌ῲ‌ȟ
ὥ

‍
‌ῲ‌ȟ

ὦ

‍

ὥ

‍
Ὡ

ὦ

‍
Ὡ  

ὑ‍ ῲ‌ ρȟ
ὥ

‍
ῲ‌ ρȟ

ὦ

‍
Ȣ                                         σȢσφ 

 

3.6.2 The Variance : 

Now, to obtain the variance of the truncated gamma distribution, we have  

ὉὣȠ‌ȟ‍ȟὥȟὦ ὓǋǋὸȿ  

ὓǋǋὸ
ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥρ ‍ὸ

‍
ῲ‌ȟ

ὦρ ‍ὸ

‍
ὓǋǋὸ

ὥρ ‍ὸ

‍
Ὡ ᶻ ὥ

ὦρ ‍ὸ

‍
Ὡ ᶻ ὦ ὓǋὸ

ὥ ρ ‍ὸ

‍
Ὡ

ὦ ρ ‍ὸ

‍
Ὡ ὓǋὸ

ὥ ρ ‍ὸ

‍
Ὡ ὥz

ὥ ‌ ρ ρ ‍ὸ

‍
Ὡ

ὦ ρ ‍ὸ

‍
Ὡ ὦz

ὦ ‌ ρ ρ ‍ὸ

‍
Ὡ ὓ ὸ  
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ὓǋǋὸ
ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥρ ‍ὸ

‍
ῲ‌ȟ

ὦρ ‍ὸ

‍
ὓǋǋὸ

ὥ ρ ‍ὸ

‍
Ὡ

ὦ ρ ‍ὸ

‍
Ὡ ὓǋὸ

ὥ ρ ‍ὸ

‍
Ὡ

ὦ ρ ‍ὸ

‍
Ὡ ὓǋὸ

ὥ ρ ‍ὸ

‍
Ὡ

ὥ ‌ ρ ρ ‍ὸ

‍
Ὡ

ὦ ρ ‍ὸ

‍
Ὡ

ὦ ‌ ρ ρ ‍ὸ

‍
Ὡ ὓ ὸ  

ὓǋǋὸ
ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥρ ‍ὸ

‍
ῲ‌ȟ

ὦρ ‍ὸ

‍
ὓǋǋὸ

ς
ὥ ρ ‍ὸ

‍
Ὡ

ὦ ρ ‍ὸ

‍
Ὡ ὓǋὸ

ὥ ρ ‍ὸ

‍
Ὡ

ὥ ‌ ρ ρ ‍ὸ

‍
Ὡ

ὦ ρ ‍ὸ

‍
Ὡ

ὦ ‌ ρ ρ ‍ὸ

‍
Ὡ ὓ ὸ  

Therefore, we have 

ὉὣȠ‌ȟ‍ȟὥȟὦ ὓǋǋὸȿ  

ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥ

‍
ῲ‌ȟ

ὦ

‍
ὓǋǋὸȿ

ς
ὥ

‍
Ὡ

ὦ

‍
Ὡ ὓǋὸȿ

ὥ

‍
Ὡ

ὥ ‌ ρ

‍
Ὡ

ὦ

‍
Ὡ

ὦ ‌ ρ

‍
Ὡ ὓ ὸȿ  
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ρ

ῲ ‌ȟ
ὥ
‍

ῲ ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥ

‍
ῲ‌ȟ

ὦ

‍
ὉὼȠ‌ȟ‍

ς
ὥ

‍
Ὡ

ὦ

‍
Ὡ ὉὼȠ‌ȟ‍

ὥ

‍
Ὡ

ὥ ‌ ρ

‍
Ὡ

ὦ

‍
Ὡ

ὦ ‌ ρ

‍
Ὡ ρ ‍ὸ ȿ  

ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥ

‍
ῲ‌ȟ

ὦ

‍
‌‍ ‌‍

ς
ὥ

‍
Ὡ

ὦ

‍
Ὡ ‌‍

ὥ

‍
Ὡ

ὥ ‌ ρ

‍
Ὡ

ὦ

‍
Ὡ

ὦ ‌ ρ

‍
Ὡ  

ρ

ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ῲ‌ȟ
ὥ

‍
ῲ‌ȟ

ὦ

‍
‌‍ ‌‍

ς‌‍ὥ

‍
Ὡ

ς‌‍ὦ

‍
Ὡ

ὥ

‍
Ὡ

ὥ ‌ ρ

‍
Ὡ

ὦ

‍
Ὡ

ὦ ‌ ρ

‍
Ὡ  

‌‍ ‌‍

Ὡ ς‌‍ὥ ὥ ‍ὥ ‌ ρ Ὡ ς‌‍ὦ ὦ ‍ὦ ‌ ρ

‍ ῲ‌ȟ
ὥ
‍

ῲ ‌ȟ
ὦ
‍

Ȣ 

Ὁὼ

Ὡ ς‌‍ὥ ὥ ‍ὥ ‌ ρ Ὡ ς‌‍ὦ ὦ ‍ὦ ‌ ρ

‍ ῲ‌ȟ
ὥ
‍

ῲ ‌ȟ
ὦ
‍

Ȣ 
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ὑ‍ ‌‍ ῲ‌ȟ
ὥ

‍
‌‍ ῲ‌ȟ

ὦ

‍
‌‍ ῲ‌ȟ

ὥ

‍
‌‍ ῲ‌ȟ

ὦ

‍

Ὡ ς‌‍ὥ ὥ ‍ὥ ‌ ρ

Ὡ ς‌‍ὦ ὦ ‍ὦ ‌ ρ  

ὑ‌‍ῲ ‌ȟ
ὥ

‍
‌‍ῲ‌ȟ

ὦ

‍
‌‍ῲ‌ȟ

ὥ

‍
‌‍ῲ ‌ȟ

ὦ

‍

Ὡ ‌‍ ὥ ‍ ὥ ‍ ὥ

Ὡ ‌‍ ὦ ‍ ὦ ‍ ὦ  

ὑ‍ ‌ῲ‌ȟ
ὥ

‍
‌ῲ‌ȟ

ὦ

‍
‌ῲ‌ȟ

ὥ

‍
‌ῲ‌ȟ

ὦ

‍

Ὡ ‌‍ ὥ ‍ ὥ ‍ ὥ

Ὡ ‌‍ ὦ ‍ ὦ ‍ ὦ  

ὑ‍ ‌ῲ‌ȟ
ὥ

‍
‌ῲ‌ȟ

ὦ

‍
‌ῲ‌ȟ

ὥ

‍
‌ῲ‌ȟ

ὦ

‍
‌‍ ὥὩ

‍ ὥ Ὡ ‍ ὥὩ ‌‍ ὦὩ ‍ ὦ Ὡ

‍ ὦὩ  

ὑ‍ ‌ῲ‌ȟ
ὥ

‍

ὥ

‍
Ὡ ‌ῲ‌ȟ

ὦ

‍

ὦ

‍
Ὡ ‌ῲ‌ȟ

ὥ

‍
‌ῲ‌ȟ

ὦ

‍

‌
ὥ

‍
Ὡ

ὥ

‍
Ὡ ‌

ὦ

‍
Ὡ

ὦ

‍
Ὡ  

ὑ‍ ῲ‌ ρȟ
ὥ

‍
ῲ‌ ρȟ

ὦ

‍
‌ῲ‌ȟ

ὥ

‍
‌ῲ‌ȟ

ὦ

‍
‌
ὥ

‍
Ὡ

ὥ

‍
Ὡ ‌

ὦ

‍
Ὡ

ὦ

‍
Ὡ  

ὑ‍ ῲ‌ ρȟ
ὥ

‍
ῲ‌ ρȟ

ὦ

‍
‌ῲ‌ȟ

ὥ

‍
‌ῲ‌ȟ

ὦ

‍
‌
ὥ

‍
Ὡ

ὥ

‍
Ὡ ‌

ὦ

‍
Ὡ

ὦ

‍
Ὡ ‌ῲ‌ ρȟ

ὥ

‍

‌ῲ‌ ρȟ
ὥ

‍
‌ῲ‌ ρȟ

ὦ

‍
‌ῲ‌ ρȟ

ὦ

‍
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ὑ‍ ‌ ρῲ‌ ρȟ
ὥ

‍
‌ ρῲ‌ ρȟ

ὦ

‍
‌ῲ‌ȟ

ὥ

‍
‌ῲ‌ȟ

ὦ

‍

‌
ὥ

‍
Ὡ

ὥ

‍
Ὡ ‌

ὦ

‍
Ὡ

ὦ

‍
Ὡ

‌ῲ‌ ρȟ
ὥ

‍
‌ῲ‌ ρȟ

ὦ

‍
 

ὑ‍ ‌ ρῲ‌ ρȟ
ὥ

‍

ὥ

‍
Ὡ ‌ ρῲ‌ ρȟ

ὦ

‍

ὦ

‍
Ὡ

‌ῲ‌ ρȟ
ὥ

‍

ὥ

‍
Ὡ ‌ ῲ‌ ρȟ

ὦ

‍

ὦ

‍
Ὡ

‌ῲ‌ȟ
ὥ

‍
‌ῲ‌ȟ

ὦ

‍
 

ὑ‍ ῲ‌ ςȟ
ὥ

‍
ῲ‌ ςȟ

ὦ

‍
‌ ῲ‌ȟ

ὥ

‍
ῲ‌ȟ

ὦ

‍
‌ ‌ῲ‌ȟ

ὥ

‍

‌ ‌ῲ‌ȟ
ὦ

‍
 

ὑ‍ ῲ‌ ςȟ
ὥ

‍
ῲ‌ ςȟ

ὦ

‍
‌ ῲ‌ȟ

ὥ

‍
ῲ‌ȟ

ὦ

‍

‌ ῲ‌ȟ
ὥ

‍
ῲ‌ȟ

ὦ

‍
 

ὑ‍ ῲ‌ ςȟ
ὥ

‍
ῲ‌ ςȟ

ὦ

‍
Ȣ                                                                 σȢσχ 

Therefore,  

              ὠὥὶὢȠ‌ȟ‍ȟὥȟὦ ὉὢȠ‌ȟ‍ȟὥȟὦ ὉὢȠ‌ȟ‍ȟὥȟὦ Ȣ 

 

3.7 Estimation of the Parameters of the Truncated Gamma Distribution 

3.7.1 Maximum Likelihood Estimators of the Truncated Gamma Distribution :  

The likelihood function is denoted by 

ὒ ὑ
ὼ

‍
Ὡ
В

 

ὑὩ
В

В

Ȣ                                            σȢσψ 
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The log-likelihood function is  

Љ ὲÌÎὑ ‌ ρ ÌÎ
ὼ

‍

В ὼ

‍
Ȣ                                 σȢσω 

Now, to obtain the maximum likelihood estimators, we derivate equation (3.39) with 

respect to ‌ and ‍. 

‬Љ

‬‌

ὲ

ὑ
‍ὑ ÌÎ

ὦ

‍
ῲ‌ȟ

ὦ

‍

ὦ

‍
Ὕσȟ‌ȟ

ὦ

‍
ÌÎ
ὥ

‍
ῲ‌ȟ

ὥ

‍

ὥ

‍
Ὕσȟ‌ȟ

ὥ

‍

ÌÎ
ὼ

‍
π 

  ὲ ‍ὑÌÎ
ὦ

‍
ῲ‌ȟ

ὦ

‍

ὦ

‍
Ὕσȟ‌ȟ

ὦ

‍
ÌÎ
ὥ

‍
ῲ‌ȟ

ὥ

‍

ὥ

‍
Ὕσȟ‌ȟ

ὥ

‍
 

ÌÎ
ὼ

‍
πȟ                                                                                                 σȢτπ 

where the function  

Ὕάȟίȟὼ Ὃ ȟ
ȟ πȟπȟȣȟπ

ί ρȟρȟȣȟρ
ὼȢ 

is a special case of the Meijer G-function (see Prudnikov, et al. 1992).  

‬ǎ

‬‍

ὲ

ὑ
ὑ ῲ‌ȟ

ὦ

‍
ῲ‌ȟ

ὥ

‍

ὦ

‍
Ὡ

ὥ

‍
Ὡ

ὲ‌ ρ

‍

ὲὼӶ

‍
π 

ὑῲ‌ȟ
ὦ

‍
ῲ ‌ȟ

ὥ

‍
ῲ‌ ρȟ

ὦ

‍
ῲ‌ ρȟ

ὥ

‍
‌ῲ‌ȟ

ὦ

‍
‌ῲ‌ȟ

ὥ

‍

‌ ρ

‍

ὼӶ

‍
π 

ὑ ῲ‌ȟ
ὦ

‍
ῲ‌ȟ

ὥ

‍
ῲ‌ ρȟ

ὦ

‍
ῲ ‌ ρȟ

ὥ

‍
‌ ῲ‌ȟ

ὦ

‍
ῲ‌ȟ

ὥ

‍

‌ ρ

‍

ὼӶ

‍
π 

ρ

‍

ῲ ‌ ρȟ
ὦ
‍

ῲ‌ ρȟ
ὥ
‍

‍ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

‌

‍

‌ ρ

‍

ὼӶ

‍
π 
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ῲ‌ ρȟ
ὦ
‍

ῲ‌ ρȟ
ὥ
‍

‍ῲ‌ȟ
ὥ
‍

ῲ‌ȟ
ὦ
‍

ὼӶ
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Maximum likelihood estimators can be found by solving equations (3.40) and (3.41) using 

iterative methods. Maximum likelihood estimation with grouped data has been discussed 

by Rosaiah et al. (1991) in the context of choosing optimal groups. Numerically the ML 

estimates are found by maximizing a function of incomplete Gamma integrals (see Brawn 

and Upton, 2007). 

To find the maximum likelihood estimates of ‌ and ‍ note that maximizing the log-

likelihood in equation (3.39) can be accomplished by using the R software . The function- 

likelihood- in R software can be used in finding the maximum likelihood estimates of ‌ 

and ‍ for data from a truncated Gamma distribution. 

Moreover, a solution for equations (3.40) and (3.41) to obtain a closed form for the MLE 

of ‌ and ‍ is not possible. However, the MLE can be obtained numerically using Newton-

Raphson iteration method.  

3.7.2 Alternative estimation procedures 

3.7.2.1 Chapman’s procedure for a truncated gamma distribution : 

With the truncated Gamma distribution there are three parameters to estimate. Chapman 

(1956) suggested a procedure based on deliberate grouping of the data.  His procedure 

depends on reducing the number of parameters from three to two. Chapman chose to work 

with the logarithms of the ratios of the counts in successive bins (so that N cancels). The 

inversion of the (r − 1) × (r − 1) variance–covariance matrix is not straightforward. 

Chapman gave the form of the inverse in the case of equi-probable bins and suggested 

omitting every second ratio if the inversion is infeasible, though that results in much less 

efficient estimates . 
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3.7.2.2 The Dahiya–Gurland method : 

Dahiya and Gurland (1978) wished to circumvent the non-linear maximum likelihood 

equations. They developed generalized minimum chi-squared estimators that were the 

solutions resulting from a lengthy sequence of simple matrix operations, with two of the 

three critical matrices involved containing differences of estimated moments and the third 

containing estimated cumulates. Their study concluded that, theoretically, these were 

efficient estimators. The method assumes an un-truncated distribution and results for finite 

samples are not given. 

3.8 Simulation Study  

A simulation study has been conducted to study the properties of the MLE of ‌ and ‍ of 

the truncated Gamma distribution at different sample sizes (n=20,50,100,200,500) when 

the true parameters equals (‌ υ and ‍ ρπ). Figure  (3.7) presents bootstrap 

distributions for 100 samples of truncated Gamma distribution with a (red) solid line 

together with 100 samples of Gamma distribution with a (black) solid line. We observe 

that the sampling distribution and bootstrap distribution are the same and figure (3.8) 

presents bootstrap distribution of the means of truncated Gamma distribution together with 

original distribution, the dotted lines correspond to the means. Based on the bootstrap 

distribution, the 95% confidence interval for the mean by percentile bootstrap method is 

(46.31 ,  46.76). 
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Figure (3.7) : The Densities of 100 Bootstrapped Samples for Gamma Distribution 

(alpha=5, beta=10). 

 

 

Figure (3.8) : Comparison of Bootstrapped Truncated Means for Gamma Distribution 

(alpha=5, beta=10). 
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Figure (3.9) represents the sampling distributions of the estimate of scale parameter ‍ of 

the truncated Gamma distribution for different sample sizes (n=20,50,100,200,500) with a 

(red) solid line together with the dotted line which represent the mean of distribution. 

Figure (3.10) represents the sampling distributions of the estimate of shape parameter ‌ of 

the truncated Gamma distribution for different sample sizes (n=20,50,100,200,500) with a 

(blue) solid line together with the dotted line which represent the mean of the distribution. 
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Fig.(a) : Sample size (n=20) Fig.(b) : Sample size (n=50) 

Fig.(c): Sample size (n=50) trimmed  Fig.(d) : Sample size (n=100) 

Fig.(e) : Sample size (n=200)  Fig.(f) : Sample size (n=500) 

Figure (3.9) : Sampling Distribution of the Estimate of Scale Parameter for Gamma 

Distribution (alpha=5, beta=10).  



45 

 

 

Fig.(a) : Sample size (n=20) 

 

Fig.(b) : Sample size (n=50) 

 

Fig.(c): Sample size(n=50)trimmed 

 

Fig.(d) : Sample size (n=100) 

 

Fig.(e) : Sample size (n=200) 

 

Fig.(f) : Sample size (n=500) 

Figure (3.10) : Sampling Distribution of the Estimate of the Shape Parameter for Gamma 

Distribution (alpha=5, beta=10). 
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Table (3.1): Expected Values and Standard Errors of the Estimate of ‌ and ‍ of the 

Truncated Gamma Distribution at Different Sample Sizes When the True Parameter 

(alpha=5, beta=10).  

 

Sample size (n) 

For ♪ For ♫ 

Mean 
Standard 

Error 
Mean 

Standard 

Error 

20 1570.772 36692.64 9.560196 7.759768 

20 (trimmed) 6.070658 6.756753 12.11214 6.663903 

50 18.23002 1110.056 10.74494 3.753756 

50 (trimmed) 5.658334 3.732658 10.74494 3.753756 

100 5.291514 2.145619 10.35315 2.563726 

200 5.116577 1.122945 10.17575 1.773892 

500 5.050782 0.6633553 10.0587 1.109506 

 

From Figure (3.9), Figure (3.10) and Table (3.1) above we can observe that the estimates 

of the parameters ɻ and ɼ are biased but as the sample size increase, the amount of bias 

decrease (i.e., the estimate of the parameters of the truncated Gamma distribution are 

(asymptotically) unbiased for large samples. As can be seen in Table (3.1) above, the 

standard error decreases as the sample size increase (i.e. the estimators of the parameters, ɻ 

and ɼ, are consistent). This means that the MLE estimators of the truncated Gamma 

distribution are (Asymptotically) unbiased and consistent estimators. 
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Chapter 4 

Inference on the Truncated Geometric Distribution 

4.1 Introduction 

In this chapter we are going to study the doubly truncated Geometric distribution in details 

and derive the probability mass function (pmf) and the cumulative probability distribution 

function (cdf) for the truncated Geometric distribution and will show the shape of those 

functions. We will also derive the moments and the moment generating function of the 

distribution. Finally we study the estimation problems of the parameters of the truncated 

Geometric distribution and attempt to give reliable estimators of its parameters. In all the 

discussions below we study the doubly truncated Geometric distribution with a parameter, 

p, as it is the general form. 

4.2 The Geometric Distribution 

Let ὢ be a random variable having the Geometric distribution and taking values ὼ

ρȟςȟσȟȣ. The Geometric pmf is  

ὖὢ ὼ ὴρ ὴ ὴή ȟ ὼ ρȟςȟσȟȣ                               τȢρ 

πȟέὸὬὩὶύὭίὩ                                    

where  

π ὴ ρ and 

ή ρ ὴ 

Such a variable represents the number of trials or failures until the first success. See Evans, 

et al. (2000). 

Its expected value is  

Ὁὢ
ρ

ὴ
ȟ                                                                               τȢς 

and its variance is 

ὠὥὶὢ
ρ ὴ

ὴ

ή

ὴ
Ȣ                                                            τȢσ 

The cumulative distribution function (cdf) is denoted by:  

Ὂὼ ρ ήȟ ὼ ρȟςȟσȟȣ                                            τȢτ 

The moment generating function (mgf) is  

ὓ ὸ ὴὩ ρ ήὩ                                                               τȢυ 
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The mode of the distribution is at 1. 

The parameter can be estimated through the method of moments (MoM) by matching the 

moments  

ὴǶ
ρ

ὼӶ
 ȟ                                                                                        τȢφ 

where ὼӶ is the sample mean, see Evans, et al. (2000). 

Maximum likelihood estimator (MLE)  of the parameter of Geometric  distribution is the 

same 

ὴǶ
ρ

ὼӶ
 ȟ                                                                                       τȢχ 

 ( Thomasson and Kapadia, 1968). 

4.3 The Distribution Function of the Truncated Geometric Distribution  

4.3.1 The Probability Density Function 

Let ὢ be a random variable having the truncated Geometric distribution in the interval 

ὥȟὦ and taking values ὼ ὥ ρȟȣȟὦ ρ. The truncated pdf of any variable takes the 

form:  

Ὢὼȿὥ ὢ ὦ
Ὢὼ

ὖὥ ὼ ὦ
 

Ὢὼȿὥ ὢ ὦ
Ὢὼ

Ὂὦ ρ Ὂὥ
 ȟ 

where ὪȢ and ὊȢ are the pdf and cdf of Geometric distribution, respectively. 

The pdf of the truncated Geometric distribution then takes the form: 

Ὢὼȿὥ ὢ ὦ
ὴή

ρ ή ρ ή
 

Ὢὼȿὥ ὢ ὦ
ὴή

ή ή
ȟ        Ø ὥ ρȟȣȟὦ ρȢ             τȢψ 

Figure  (4.1) represents the shape of distribution of pdf of the Geometric distribution with 

parameter (p=0.3) in (a). Figure (4.1) (b) represents the shape of distribution of data 

generated from Geometric distribution with the same parameter (p=0.3) then truncated at 

truncation points a=2, b=7, while Figure (4.1) (c) represents the shape of distribution of the 

data generated from truncated Geometric distribution with the same parameter and 
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truncation points and Figure (4.1) (d) represents the shape of theoretical distribution 

(formula 4.8) of truncated Geometric distribution with the same parameter and truncation 

points. 

We observe that the shape of distribution in figures (4.1)(b)-(d) are identical. 

 

 

Figure(4.1): The Shape of PDF of the Geometric Distribution, Truncated Geometric 

Distribution of Simulated Data from Geometric and Truncated Geometric Distribution, and 

of Theoretical CDF of Truncated Geometric Distribution with the Same Parameter (p=0.3)  

at Truncation Points a=2, b=7. 

4.3.2 Special Cases : 

1) Left Truncation Geometric Distribution : 

Let ὢ be a random variable having the truncated Geometric distribution from the left and 

taking values  ὼ ὥ ρȟὥ ςȟȣ . The truncated pdf of any variable takes the form: 

Ὢὼȿὢ ὥ
Ὢὼ

ὖὼ ὥ
 

ὴή

ρ Ὂὥ
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ὴή

ρ ρ ή
 

ὴή

ή
 

                                                       ὴή ȟ ὼ ὥ ρȟὥ ςȟȣ   

2) Right Truncation Gamma Distribution : 

Let ὢ be a random variable having the truncated Geometric distribution from the right at b 

and taking values ὼ ρȟςȟȣȟὦ. The truncated pdf of any variable takes the form: 

Ὢὼȿὢ ὦ
Ὢὼ

ὖὼ ὦ
 

                      
ὴή

Ὂὦ ρ
 

ὴή

ρ ή
ȟ ὼ ρȟςȟȣȟὦ ρȢ          

4.3.3 The Cumulative Distribution Function  

The cdf of the truncated Geometric distribution takes the form :  

Ὂὼ ὪὯ 

ὴή

ή ή
 

     
ὴ

ή ή
ή  

ὴ

ή ή

ή ή

ρ ή
 

                           
ή ή

ή ή
ȟ        ὼ ὥ ρȟȣȟὦ ρȢ                            τȢω 

Figure (4.2) represents the shape of cumulative distribution of the Geometric distribution 

with parameter (p=0.3) in (a). Figure (4.2)(b) presents the shape of cumulative distribution 

of data generated from Geometric distribution with the same parameter (p=0.3) then 
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truncated at truncation points a=2, b=7, while Figure (4.2) (c) represents the shape of 

cumulative distribution of data generated from truncated Geometric distribution with the 

same parameter and truncation points and Figure (4.1) (d) represents the shape of 

theoretical cumulative distribution (formula 4.9) of truncated Geometric distribution with 

the same parameter and truncation points. We observe that the shape of cumulative 

distribution in Figure (4.1)(b)-(d) are identical. 

 

 

Figure (4.2): Shapes of CDF of the Geometric Distribution, Truncated Geometric 

Distribution of Simulated Data from Geometric and Truncated Geometric Distribution, and 

of Theoretical CDF of Truncated Geometric Distribution with the Same Parameter (p=0.3)  

at Truncation Points a=2, b=7. 

4.3.4 The Expected Value 

Its expected value of the distribution is expressed as: 

Ὁὢ ὼ
ὴή

ή ή
 

ὴ

ή ή
ὼή  
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ὴή

ή ή
ὼή ὥ ρ ή ȟ 

We can easily show that the sum of the arithmetic Geometric series takes the form:  

Ὥὥ
ὥ ὲὥ ὲ ρὥ

ρ ὥ
ȟ                                                   τȢρπ 

Using formula (4.10) and the sum of the Geometric series we obtain: 

Ὁὢ
ὴή

ή ή

ή ὦ ὥ ρή ὦ ὥ ςή

ρ ή
ὥ ρ

ρ ή

ρ ή
 

ὴή

ή ή

ή ὦ ὥ ρή ὦ ὥ ςή ὥ ρ ρ ή ρ ή

ρ ή
 

ὴή

ή ή

ρ ὥ ὥή ὦή ὦ ρή

ρ ή
 

ή

ή ή

ρ ὥρ ή ὦή ὦ ρή

ρ ή
 

ή

ή ή

ρ ὥὴ ὦή ὦ ρή

ρ ή
 

ρ

ρ ή

ρ ὥὴ ὦή ὦ ρή

ρ ή
 

ρ ὥὴ ὦή ὦ ρή

ρ ή ρ ή
 

Ὁὢ
ρ ὥὴ ή ὦὴή

ὴρ ή
Ȣ                                                   τȢρρ 

Figure (4.3) presents the expected values of the mean of both the Geometric distribution 

and the truncated Geometric distribution, using formula (4.11) of the distribution mean, 

and using a simulated sample and both illustrated on the bootstrapped distribution curves. 

In figure (4.3) of the bootstrap distribution of the means of truncated Geometric 

distribution and the original distribution, the dotted lines correspond to the means. Based 

on the bootstrap distribution, the 95% confidence interval of the mean is (3.82,4.21).  
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Figure (4.3): Comparison of Bootstrapped Means for Both Geometric and Truncated 

Geometric Distributions  with Parameter P=0.3 and Truncation Points (a=2 & b=7). 

4.3.5 The Mode of the Truncated Geometric Distribution 

The mode of the truncated Geometric distribution is the value ὼ at which its pdf in 

equation (4.8) has its maximum value, that is, the value ὼ that makes the amount ή  has 

maximum value. From the figure (4.1) for the pdf of truncated Geometric distribution, we 

note that the maximum value of its pdf is at the first value of ὼ        (i.e. ὼ ὥ ρ).  

Therefore, we get the mode of the truncated geometric distribution at ὼ ὥ ρ.  

4.4 The Moment Generating Function of Truncated Geometric Distribution  

The moment generating function of the truncated Geometric distributions with parameter p 

and truncation points a and can be expressed as follows: 

ὓ ὸ ὉὩ Ὡ Ὢὼ 
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Ὡ
ὴή

ή ή

ὴ

ή ή
Ὡ ή  

ὴ

ή ή
Ὡ ή Ὡ Ὡ 

ὴὩ

ή ή
Ὡ ή  

ὴὩ

ή ή
ήὩ  

ὴὩ

ή ή
ήὩ ήὩ Ễ ήὩ ήὩ ȟ 

 

where ήὩ ήὩ Ễ ήὩ ήὩ  is Geometric series and its 

summation equal 

ήὩ ήὩ

ρ ήὩ
Ȣ 

So , 

ὓ ὸ
ὴὩ

ή ή

ήὩ ήὩ

ρ ήὩ
 

                      
ήὩ ήὩ

ή ή
ὴὩ ρ ήὩ  

ήὩ ήὩ

ή ή
ὓ ὸȟ                                    τȢρς 

where ὓ ὸ is the moment generating function of the Geometric distribution. 

4.5 Computing the Moments from the Moment Generating Function 

4.5.1 The Expected Value of Truncated Geometric Distribution : 

We have:        Ὁὢ ὓ π 
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ὓ ὸ
ρ

ή ή
ὥήὩ ὦ ρ ήὩ ὓ ὸ

ήὩ ήὩ ὓ ὸ  

where ὓ ὸ is the moment generating function of the Geometric distribution. 

Therefore,   

Ὁὢ
ρ

ή ή
ὥή ὦ ρή ὓ π ή ή ὓ π  

ρ

ή ή
ὥή ὦ ρή ή ή Ὁὣ ȟ 

where ὓ π ρ and ὓ π Ὁὣ ȟ then 

Ὁὢ
ὥή ὦ ρή

ή ή
Ὁὣ 

Ὁὢ Ὁὣ
ὦ ὥ ρή

ή ή
Ȣ                                               τȢρσ 

ρ

ρ ή

ὥή ὦ ρή

ή ή
 

ή ή ὥή ὦ ρή ὥή ὦ ρή

ή ή ρ ή
 

ή ρ ή ὥ ὦ ρή ὥή ὦ ρή

ή ρ ή ρ ή
 

ρ ὥρ ή ὦή ὦ ρή

ρ ή ρ ή
 

ρ ὥὴ ή ὦ ὦ ρή

ρ ή ρ ή
 

ρ ὥὴ ή ὦ ὦήή

ρ ή ρ ή
 

ρ ὥὴ ή ὦὴή

ὴρ ή
Ȣ 

This result identical to equation (4.11). 
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4.5.2 The Variance of Truncated Geometric Distribution 

Now, to obtain the variance of truncated Geometric distribution, we have: 

Ὁὢ ὓ π 

Thus, 

ὓ ὸ
ρ

ή ή
ὥ ήὩ ὦ ρ ήὩ ὓ ὸ

ςὥήὩ ὦ ρ ήὩ ὓ ὸ ήὩ ήὩ ὓ ὸ  

where ὓ ὸ is the moment generating function of the Geometric distribution. 

Therefore, 

Ὁὢ
ρ

ή ή
ὥή ὦ ρ ή ὓ π ςὥή ὦ ρή ὓ π

ή ή ὓ π  

ρ

ή ή
ὥή ὦ ρ ή ςὥή ὦ ρή Ὁώ

ή ή Ὁώ  

where ὓ π ρȟ ὓ π Ὁὣ  and Ὁὣ ὓ πȟ then  

Ὁὢ Ὁὣ
ὥή ὦ ρ ή

ή ή

ςὥή ὦ ρή

ή ή ρ ή
                                                            τȢρτ 

ρ ή

ρ ή

ὥή ὦ ρ ή

ή ή

ςὥή ὦ ρή

ή ή ρ ή
 

ὥ ρ ή ςὥ ςὥ ρή ὥή ὦή ςὦ ςὦ ρή ὦ ρ ή

ή ή ρ ή
 

ή ὥ ρ ςὥ ςὥ ρή ὥή ὦή ςὦ ςὦ ρή ὦ ρ ή

ή ρ ή ὴ
 

              

ὥ ρ ςὥ ςὥ ρή ὥή ὦή ςὦ ςὦ ρή ὦ ρ ή

ρ ή ὴ
 

ȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣȣ  τȢρυ 
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Therefore,  

ὠὥὶὢ Ὁὢ Ὁὢ ȟ 

Using the formula of Ὁὢ  and Ὁὢ  in equations (4.13) and (4.14) respectively, we 

obtain  

ὠὥὶὢ Ὁὣ
ὥή ὦ ρ ή

ή ή

ςὥή ὦ ρή

ή ή ρ ή

Ὁὣ
ὦ ὥ ρή

ή ή
 

Ὁὣ
ὥή ὦ ρ ή

ή ή

ςὥή ὦ ρή

ή ή ρ ή
Ὁὣ

ςὦ ὥ ρή

ή ή
Ὁώ

ὦ ὥ ρή

ή ή
 

Ὁὣ Ὁὣ
ὥή ὦ ρ ή

ή ή

ςὥή ὦ ρή

ή ή ρ ή

ςὦ ὥ ρή

ή ή ρ ή

ὦ ὥ ρ ή

ή ή
 

ὠὥὶὣ
ὥή ὦ ρ ή

ή ή

ςὥή ὦ ρή ὦ ὥ ρή

ή ή ρ ή

ὦ ὥ ρ ή

ή ή
                                                                                              τȢρφ 

ή

ρ ή

ὥή ὦ ρ ή

ή ή

ςὥή ὦ ρή ὦ ὥ ρή

ή ή ρ ή

ὦ ὥ ρ ή

ή ή
                                                                 τȢρχ 

 

4.6 Maximum Likelihood Estimation of Truncated Geometric Distribution 

For a random sample of size n, the likelihood function is  

ὒ Ὢὼ  
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ὴή

ή ή
 

ὴ

ή ή
ήВ  

ὴ ή ή ήВ ȟ 

Therefore, 

ὒ ὴ ή ή Ὡ Ӷ Ȣ 

The log-likelihood function is 

Љ ὲÌÎρ ή ὲÌÎή ή ὲὼӶρÌÎήȢ 

Now, derivate the log-likelihood function with respect to q and equal equation to zero to 

obtain the maximum likelihood estimator of q, ήȟ and ὴǶ ρ ήȢ 

‬Љ

‬ή

ὲ

ρ ή

ὲὥή ὦ ρή

ή ή

ὲὼӶρ

ή
π 

ρ

ρ ή

ὥή ὦ ρή

ή ή

ὼӶρ

ή
π 

ὥ ὦ ςή ὥή ὦ ρή ρ ὼӶρ ή ρ ή

ήρ ή ρ ή
π 

 

ὥ ὦ ςή ὥή ὦ ρή ρ ὼӶρ ή ρ ή π 

ὼӶὦ ρή ς ὦ ὼӶή ὼӶὥή ὼӶὥ ρ π   τȢρψ  

equation (4.18) is a Ὠ  degree polynomial in q, the maximum likelihood estimator of q, ήȟ 

by the invariance property. 

ὼӶὦ ρ ή ς ὦ ὼӶ ή ὼӶὥ ή ὼӶὥ ρ π           τȢρω 

Now, a solution for Eq. (4.19) to obtain a closed form for the MLE of p is not possible. 

However, the MLE can be obtained numerically by finding the roots of Eq. (4.19) using 

Newton-Raphson iteration method.  

  



59 

 

4.7 Simulation Study 

A simulation study has been conducted to study the properties of the MLE of p of the 

truncated Geometric distribution at different sample sizes (n=25,50,100,200,300,500) 

when the true parameter equals (P=0.3). Figure (4.4) represents the sampling distributions 

of the MLE estimate of p of the truncated Geometric distribution with a (red) solid line 

while the dotted line represents the expected value of the distribution. Table (4.1) below 

also represents the expected values and the standard errors of the estimate of p of the 

truncated Geometric distribution with p=0.3 and truncation points (a=2 and b=7). 
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Fig. (a) : Sample size (n=25) 

 
Fig. (b) :  Sample size (n=50) 

 
Fig. (c) :  Sample size (n=100) 

 
Fig. (d) :  Sample size (n=200) 

 
Fig. (e) :  Sample size (n=300) 

 
Fig. (f) :  Sample size (n=500) 

Figure (4.4): Sampling Distribution of the Estimate of p of the Truncated Geometric Distribution 

at Different Sample Sizes When the True Parameter p=0.3. 
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Table (4.1): Expected Values and Standard Errors of the Estimate of p of the Truncated 

Geometric Distribution at Different Sample Sizes When the True Parameter P=0.3 and 

Truncation Points (a=2 & b=7). 

Sample Size (n) Mean Standard Error 

25 0.2976139 0.1091978 

50 0.2997176 0.07675266 

100 0.3001744 0.05410469 

200 0.3001409 0.03789932 

300 0.3000707 0.03085279 

500 0.2998665 0.02394177 

From Figure (4.4) and Table (4.1) above we can observe that the estimator of the 

parameter p is unbiased because the mean of the distribution of ὴǶ approximately equal the 

true parameter p at different sample sizes. As shown in the table above the standard error 

of the estimator also decreases as the sample size increase (i.e. the estimator of the 

parameter, ὴǶ, is consistent). This means that the MLE estimator of the truncated Geometric 

distribution is unbiased and consistent estimator.    
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Chapter 5 

Conclusions And Recommendations  

5.1. Introduction: 

In this study we constructed inferences of some truncated distribution within exponential 

family namely, the normal, the gamma and the geometric distributions to establish some 

results that can be useful for the community when part of the community instead of the 

complete community is the core of the study. Therefore, in this study we concentrated on 

the distributions that belong to exponential family because we believe that they have 

important applications in life testing and other fields. The truncated normal distribution has 

wide applications in statistics and econometrics. For example, it is used to model the 

probabilities of the binary outcomes in the probit model and to model censored data in the 

Topit model. Other  truncated distributions have many important applications in other 

fields including studies of modeling survival times and quality control. 

In our thesis we find the probability density functions of the truncated normal, gamma and 

geometric distributions, their cdf, means, variances and their mgfs. We also attempted to 

provide a good estimates for the parameters for each one.    

5.2. CONCLUSIONS: 

From all the discussion of this study the following conclusions can be drawn: 

¶ Using data from the truncated distributions we can draw inference on the 

parameters and obtain estimators of the parameters of the original distributions. 

¶ To obtain a good estimators for the parameters of the original distribution based on 

date from the truncated distributions we need to take large sample sizes from the 

truncated community. 

¶ We can use numerical solution to find the estimators for the parameters of the 

original distributions as long as we cannot find the closed form for the estimators. 

¶ We can use various mathematical and numerical methods to obtain the estimators 

of the un-truncated distributions using data from the truncated distributions. For 

example, Newton-Raphson method and others. 

¶ We derived in this study properties of three truncated distributions in doubly 

truncation cases and we concluded the properties of single truncation as special 

cases. 

http://en.wikipedia.org/wiki/Probit_model
http://en.wikipedia.org/wiki/Tobit_model
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5.3. Recommendations: 

The truncated distributions are important to uses in many applications. Therefore, from this 

study we can recommend the following: 

¶ Conduct more research and find other properties for truncated distributions that 

discussed in this study. For example likelihood ratio and hypothesis tests on the 

parameters and other inference. 

¶ Conduct more research on the applications of the results of this study on various 

fields, especially economics, survival analyses, quality assurance and 

environmental applications. 

¶ Conduct more research on other truncated distributions such as Cauchy, Weibull, 

exponential, Poisson, beta and chi-squared. 

¶ Generalize the results of this study on the truncated distributions within the 

exponential family. 
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