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Abstract

Title: In situ absorption study of acebutolol by modulatinglfzoprotein with verapamil in rats.

Introduction: Acebutolol HCI (ACH) is a selective-adrenergic receptor blocking agent which is used

for the management of hypertension. ACH is commercially available for oral administration as a
hydrochloric salt which is the preferable route of administration despite its low oral bioavailabitty (30

%). ACH can be actively secreted from the enterocyte igly&oprotein (Pgp) efflux pump which
distributed along the intestine. Verapamil HCI, a calcium channel blocking agent, is considered a potent
inhibitor of P gp. Drugdrug interaction is an expectevent when verapamil HCI is administered with

ACH concomitantly.

Aim: The purpose of this study was to evaluate the effect of verapamil HCtdpsirfhibitor) on the

intestinal absorption of ACH by comparing the changes in the absorption rate coht@ht.o

Methodology: In situ intestinal perfusion technique was conducted in healthy wister albino male rats
(weighting 256300 g) to study the absorption phase of ACH. Eighteen rats were divided into three groups.
The T group (the control group) was perfused with ACH alone (260 pg/mL). Then2l 3 groups were
perfused with ACH (260 pg/mL) in combination with verapamil HCI atedt#ht concentrations (2Gihd

400 pg/mL, respectively). UV spectrophotometric method dexgeloped and validated for quantitative
analysis of ACH remnant concentrations in intestinal luminal fluid samples. Intestinal absorption of ACH
was evaluated using apparent fiostler rate constants 4k SPSS was used for statistical analysis of the

data obtained experimentally.

Results: The developed spectroscopic method had good linearity in the ra2@@ dg/mL. The methb
was accurate (% recovery 99.802.5 and precise (% RSD < %or both interday and intraday precision.
The absorption studghowed that & of ACH when administered alorie the ' group was 0.468 + 0.0449
h. In the & group kpincreased folds (1.37 + 0.0308h when ceadministered witlverapamil HCI 400
ug/mL, however, the ™ group showed no significant change ig, K0.3892 + 0.0761) when co
administered wittverapamil HCI 200 pg/mL.

Conclusion The results obtained in our study revealed that verapamil HCI-gs iBhibitor) has a

pronounced effect on the absorption kinetic of ACH (increaggdnykich could be linked to the inhibition

of P-gp that considered as a contributed factor of low bioavailability of ACH.

Keywords: Acebutolol HCI, verapamil HCI, ®lycoprotein,Intestinal perfusion techniquabsorption.
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Chapter 1

Introduction

1.1Background

Experimental pharmacokinetic studies remain as one of the main topics in research and
development of drugs. It also considers fundamental for entering clinical studies (Jaiswal
et al.,, 2014). Absqtion, distribution,metabolismand excretion (ADME) studies are

important to ensure that optimum amount of drug reaches the systemic circulation at an

optimal rate and its effect is maintained for entire duration of therapy.

Drug absorption is a key part of most pharmacoksnptocesses and it represents the

first step that cagreatlyinfluence drug bioavailability. For a drug to be absorbed it is
necessary to pass across cell membranes. The passage of drugs across cell membranes
occurs by one of four mechanisms: diffusidittration, carriermediated transport or

pinocytosis (Chillistone and Hardman, 2008).

Oral administration is the most commamnd preferablaoute of administration. The
major site of absorption of orally administered drugs is the small intestine cheeltoge
surface area. When a drug is administered orally it has to be absorbed across the
gastrointestinal bimolecular lipid matrisacomplete absorption lowers the proportion of

the dose able to reach systemic circulation.

The rate and extent of drugsasption across the intestinal membrane are dependent on
many drug and patient factors (Jamei et al., 2009). Drug related factors involve
physicochemical properties of the drug (molecular size, lipid solubility, degree of
ionization and chemical nature) cardosage characteristics (dosage form, formulation,
and concentration of drug entering the intestine). Patient related factors include the
structure of absorbing surface (efflux and influx protein transporters), vascularity, pH, Gl
motility, presence of dier substance as foods, fluids or drugs, and physiological
characteristic of the patient as malabsorption syndrome (Martinez and Amidon, 2002;
Chillistone and Hardman, 2008).



Drug transporters as one of the main factors affecting intestinal absorptiomebeco
increasingly evident in influencing orally administered drugs (Shugart and Benet, 2009;
Varma et al., 2010). Membrane transporters are dividedtiwo major superfamilieshe

solute carrier (SLC) familand ATP binding cassette (ABC) familyhe moverent of

many drugs across the intestinal membrane is regulated by these transporters. (Liang et
al., 2015).

The SLC superfamily includes many important uptake transporters such as proton
dependent oligopeptide transporters , organic anion transporters) (Al organic
cation transporters (OCT). The ABC superfamily includes many efflux transporters such
as Rglycoprotein (Pgp), multidrug resistaneassociated protein 2 (MRP 2) and breast

cancer resistance protein (BCRP) (Estudante et al., 2013).

P-gp, a mdtidrug resistant protein 1 (MDR1), is found in many tissues including
intestine, liver, kidney, brain, testis, placenta, and lung and also expressed in many cancer
cells (Leslie et al., 2005). Its physiological role is to protect some tissues suchras brai
from harmful substances. In intestingp plays an important role in drug absorption by
returns the drug back into the intestinal lumen. In additiegp Fediates drugrug and
food-drug interaction due to its broad specificity which could affectpafied efficacy of

its substrate (Friend, 2004; Giacomini et al., 2010).

Many structurally unrelated drugs such as digoxin, fexofenadine, loperamide, quinidine,
talinolol and vinblastine have been classified agpBubstrate by FDA center, thereby P

gp plys an important part in modulating absorption and elimination of these drugs (FDA,
2016).

It is now well established that induction or inhibition e§p leads to drug interaction in
humans (Bauer et al., 2012). Numerous substances as cyclosporinedaelacr
ketoconazole, quinidine, reserpine, ritonavir, tacrolimus, valspodar, verapamil and
zosuquidar have been identified aggPinhibitors (FDA, 2016). Previous kinetic studies
emphasized the importance of using@inhibitors to evaluate the effect Bfgp on the

rate of absorption and bioavailability of many drugerfg et al., 2006Abushammala et

al., 2013).



Acebutol ol HCI ( ACH) i's a cardi oldaevéyect i ve
20123. Oral bioavailability ofACH is approximately 3®0% asit undergoes significant

first-pass metabolism (Roux et al., 1883Also there is evidence that ACH is a substrate

for P-gp which plays a role as an absorption barrier (Terao et.al, 1996). Thus
investigating the effect of-Bp inhibition on the absorptokinetic of ACH could be a

valuable interesting issue.

Verapamil HCI, a calcium channel blocking agent, is a competitive inhibitor of intestinal
P-gp and used as a tool for studying the effect-gpRnhibition on the absorption and
bioavailability of may drugs and a significant changes in the absorption kinetic have
been observed (Saitoh and Aungst, 1995; Dahmani et al., 2012; Choi and Song 2016).

Many in vitro, in situ, and in vivo methods have been used to determine intestinal drug
absorption. In situintestinal pefusion technique and in vitro @&o2model become
increasingly important in pharmaceutical designation (Chan et al., 1997; Bohet et al.,
2001; Liu and Hu, 2002).

Intestinal perfusion technique was developed by Doluisio et al. for studying
gastrointestinal drug absorption from isolated gut segments of the anesthetized rats in situ
as it is based on disappearance of drug fromirttestinalluminal fluid (Doluisio et al.,

1969). Previous studies have shown that this technique could bedutith precision

to predict the human intestinal permeability and the fraction of dose absorbed following
oral administration (Salphati et al., 2001; Zakdiiania et al., 2007).

In this study, in situ intestinal perfusion technique on anesthetizedvestsused to
determine the effect of verapamil HCI at different concentraiip®8 and 400 pg/mLas
a Rgp inhibitoron the absorption of ACMhich is a Pgp substrate.

1.2 Justification of study

Absorption phase is a very important step, since it refléaig bioavailability which is
associated with drug efficacy and toxiciCH, a s e-lbloekertdiugy peeschbed for

hypertensive and cardiovascular disease patients, has a relative low oral bioavailability



and therefore factors affecting drug alpgimm are critical for its efficacy. -Bp could

play a role in this concept.

1.3 Problem statement

P-gp is an active efflux transporter that play a pivotal role in drug absorption from small
intestinal lumen and temporal change of its activity may afféfataey and toxicity
profile of some drugs. In case &CH which is a Pgp substrate and has low
bioavailability profile (3550%), the role of Byp in its absorption should be studied using
in situ rat model with cadministration of verapamil HCI asdp inhibitor.

1.4Aim

This study aims to study the absorption phasé©GH alone and in the presence of
verapamil HClas Rgp inhibitor at different concentrations, using in situ intestinal
perfusion technique on rats in order to clarify the significance of the potential
pharmacokinetic drugrug interaction between the two medications througbp P

inhibition.

1.50Dbjectives

1 Studying the absorption phaseAEH using in situ intestinal perfusion technigue on
rats.

1 Studying the absorption phase ACH in the presence of-§p inhibitor verapamil
HCI at different concentrations.

1 Evaluation potential drudrug interaction betweeACH and verapamil HCI by data
analysis.

1 Investigationthe lower dose of verapamil HCI that coulause significant inhibition
of P-gp.

1 Validation of simple analytical spectrophotometric method A&H analysis in

intestinal fluid free solution.



Chapter 2

Litrature review

2.1 Absorption process

2.1.1 Background

Absorption phase is a key part of most pharmacokinetic processes. Oral drug delivery is
the predominant route of administration for the pharmaceutical products used worldwide.
However, to exert iteffect, sufficient intestinal absorption is a prerequisite for an orally
administered dose when a systemic effect is a desired (Abrahamsson and Lennernas,
2003). Furthermore, understanding and improvement of gastrointestinal drug absorption
predictions iscurrently a highly prioritized area of research within the pharmaceutical
industry(Zhou et al., 2012; Sjogren et al., 2013)

The principal site of absorption of orally administered drugs is the small intestine due to
the large surface area since the presence of villi and microvilli increases the absorptive
area many folds. Small intestine divides into three regions, duodenumure and

ileum. The duodenum and jejunum possess the greatest surface areas bethese

highest concentration of villi and microvilli in these regions (Moore et al., 2014).

The intestinal epithelium forms a selective barrier against the entry of comipanto

blood. The permeation of drugs through the intestinal wall varies along the small intestine
and is extensively influenced by any transport mechanisms involved (Tannergren et al.,
2009; Sugano et al., 2010).

Absorption is a major contribute factolo oral bioavailability. The oral drug
bioavailability F) is defined as the fraction of oral dose that reaches the systemic
circulation in unchanged form. It is directly related to the drug absorption and

metabolism in the gut wall and can also be elaieid by the equation 1:

F=Fa.Fy.Fn (Eq. 1)



WhereF, is the fraction of intactirug that is absorbeglcross the apical membrane into
the enterocyteF, is the fractionof drugin the enterocyt¢hatescapes metabolism in the
gastrointestinal tract, arfé, is the fractionof drug that enters the liver and escapes-first
pass hepatic metabolism (Jamei et 2009). Many factors influencing the bioavailability

of orally administered drugs, but generally increasing oral drug absorption and
metabolism stability will resulting in increased the bioavailability and therapeutic effect
of the drug (Richter et al2001).

2.1.2 Intestinal transport mechanisms of drugs

The process of drug absorption occurs for all routes of administration except for
intravenous administration. The two principal routes of drug transport across small
intestinal epithelium are paraadhr transport and transcellular transport (Chan et al.,
2004; Friend, 2004). The paracellular pathway allows drugs transport between adjacent
enterocytes. Despite the fact that absorption via this route is restricted by tight junctions,
small hydrophilicionized drugs may pass by this route (Hayashi et al., 1997). In the
transcellular transport drug molecules is transported across the enterocyte. A number of
hydrophilic drugs undergo transcellular absorption which may be facilitated via specific
carriermediated system. Whereas, lipophilic driaye absorbed via passitranscellular
pathway (Hunter and Hirst, 1997; Wielinga et al., 1999).

Passive diffusion is the most abundant route of membrane penetration in which the rate of
penetratoncanb@ ppr oxi mated by Fickdés first | aw of
driven by the concentration gradient across the intestinal membrane becalssothed

drugis rapidly diluted into a very large volume of blood (Rosenbaum, 2011).
dAp/dt = Py - SAn - (CusT Qu (Eq. 2)

where dA/dt is the amount of dgudiffusing per unit timeP,, the permeability of the
drug through the membran&A, the surface area of the membrar@y, the higher

unbound drugoncentrationand Cu the lower unbound concentration

On the other hand, carriemediated intestinal transport depends on a membrane bound

protein transportersthat associate reversibly with drug molecules at a specific site.
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Carier-mediated system is classified into active and passive transport according to the
concentration gradient of substrate and the involvement of metabolic energy. In active
carriermediated transport, drug molecules are transported against concentratiemigr
using metabolic energy. In contrary, passive camediated transport is similar to
passive diffusion as the drug molecules are driven by concentration gradient of the drug
without utilizing metabolic energy (Cao et al., 2008). Carrieediated tansport is a
saturable mechanism and the rate of diffusion is described by Michtien equation

as represented in equation 3:

HA_Vm A g
dt ll"l’ +A€8

(Eq. 3)

WheredAy/dt is the rate of drug absorptio¥, is maximum velocity of transpork,, is
constant of michaekmentenand A is concentration of drug in the site of absorption
(Rowland and Tozer, 1995).

Endocytosis is another mechanism of drug transport in which tlgetdroe absorbed is
progressively enclosed by a small portion of pleesma membranewhich first
invaginates and then pinches off to form eadocyticvesiclecontaining the drug
molecule. Large drug molecules as proteins are transported by endocytosis (Liang et al.,
2006).

2.1.3 Factors affecting intestinal absorption

The gasrointestinal absorption is in reality a complex process determined by many
factors. The factors that may have impact on the drug absorption are drug formulation,
physicochemical properties of the drug and physiological properties of the
gastrointestinalGl) tract (Martinez and Amidon, 2002; Mudie et al., 2010), as shown in
Fig. 2.1 Drug properties affecting oral absorption inclysle,, solubility, dissolution,
luminal degradation andermeability (Dressmann et al., 1985; Van de Waterbeemd and
Jones 2003)Physiology related factors composed of gastric emgtyate, intestinal
transit, motility, gastroinéstinal fluid pH, secretiormrgabsorption, intestinal blood flow,

bile secretion, enterohepatic recirculation, and fasted/fed state differences. Adisef t


https://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5642/
https://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5923/

physiological factors may also be conditioned by age, sex, race, and disease (Jamei et al.,
2009; Chillistone and Hardman, 2008).

Among these factors the abundance and location of enzymes and transporters down the
gastrointestinal tract (GIT) play amportant role in absorption process. Transporter
expression in the intestine suggests that factors affecting their function will be important
determinants of oral drug absorption (Oswald et al., 2008; Varma et al., 2010; Giacomini
et al., 2010). Regulatprelements controlling protein expression, genetic polymorphisms
leading to increased or decreased function anddeoinistration with inhibitors are all
important determinants that alter the ability of transporters to transport substrates
(Shugarts and Beet, 2009).

Intestinal absorption studies is not only important to determine oral drug efficacy and
performance but it is also considered an important aspect fordduggand fooetrug

interactions prediction (Jambhekar and Breen, 2009; Lilja et al.)2005



Age, sex, disease

| Oral Drug Administration |-.— Dose {SME e,

Drug scolubility, pK,, lipophilicity,
particle size, diffusivity, GIpH,

I Disintegration and Drug Dissolution ‘

Age, food, posture,
exercise, BMI, stress,

visgosity & volume of GI fluid,
type of formulation etc,

diseases, size & density Gastric emptying ,

of the formulation, and intestinal ) . Drug degr?datmn, GI pH, crystal form, food

concomitant drugs efc. transit complexation, of __ components, presence of GI
precipitation enzymes etc.

Lipophilicity, MW,
solubility, GI pH,
thickness of UWL etc.

Drug permeation through Intestinal Membrane

ASBT,OCT1/2/3, CNTL/2,
OCTN1/2, DATPIAZ,

(*)
- InUX CAnSPOTeTs = - LRI, OATPIAL

CYPs, GSTs, UGTs, | [rioctial . (9 OATP3AL, PEPT1/2
SULTB’.dn1g'ng metabolism
interaction etc,
() Pgp, MDRI, MRF1/2/3/4,
—— Efflux transporters BCRE MCT1. ENT1/2
| Drug in Portal Vein |
CYPs, GSTs, UGTs, | | A
SULTS, drug-drug epatic.
metabolism

interaction, protein
binding etc.

| Dirug in Hepatic Vein in the Liver |

L

| Drug in Systemic Circulation ‘

Figure 2.1: Schematic diagram of the steps and factors associated with oral drug absorption.
Molecular weight (MW), Unstirred water layer (UWL), Cytochrome P450 (CYP),
UDPGlucuronosyltransferase (UGT), Glutathione Stransferase (GST), Sulfotransferase(SULT),
apical sodiumdependent bile acid transporter (ASBT), Organic cation transporter (OCT),
Concentrative nucleotide transporter (CNT), Electroneutral organic cation transporter (OCTN),
Organic anion transporting polypeptide (OATP), Peptide transportprotein (PEPT), P-glycoprotein
(P-gp), Multidrug resistance protein (MDR), Multidrug resistance associated protein (MRP), Breast
cancer resistance protein (BCRP), Monocarboxylate transporter protein (MCT), Equilibrative
nucleoside transporter (ENT), (+) ad (_) indicates an increase or a decrease in the rate and/or extent
of drug absorption, respectively Huang et al. 2009; Abuhelwa et al., 2017



2.2 Rglycoprotein (P-gp)
2.2.1 Structure and mechanism of transport

P-gp (also known as ABCB1, MDR1) wassdovered in 1976 by Juliano and Ling as a
phosphoglycoprotein expressed in Chinese hamster ovary cells that had been selected for
resistance to colchicine (Juliano and Ling, 1976). It was then identified as an-energy
dependent dynamic efflux pump that s ATP to drive the efflux of its substrates

from inside of the c#d to the outside by acting asflippase or hydrophobic vacuum
cleanerand is therefore currently classed as an ABCB1 member of the ABC transporters
superfamily (Dean et al., 2001; Gattean et al., 2002; Aller et al., 2009).

P-gp, a 170 kDa membrane protein, is a dimer single polypeptide chain consisting of
1280 amino acids with two transmembrane domains (TMDs) each containing six
transmembrane helices (TMHs) forming a ring with theralt 12 TMHs and two
nucleotidebinding domains (NBDs) (Gottesman and pastan, 1@98. 2.2). The TMDs
provide the transport pathway for a particular substrate, and the NBDs activate the
transport by ATP hydrolysis. It is believed that this transporter functions through an
alternate access mechanism involving two different conformationdeftdtedin, et al.,

2007; Van Wonderen et al., 2014).

TMD1 TMD2

= §tside

Membrane

Inside

COOH

L J L=

NBD1 NBD2

Figure 2.2: Schematic representation of Ryp structure. TMD= transmembrane domains; TM=
t r a ns me mbefica;NBD=Wucleotide binding domains; ATP= adenosine triphosphatéP@lmeira
etal., 2012
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Recantly, two research groups produced theay structures of eukaryotic (mouse) Apo
and ligandbound Pgp, enhancing enormously the understanding of the protein structure
at atomic level (Aller et al., 2009; Ward et al., 2013).

The Rgp efflux pump seems wandergo a conformational change by a flippase activity in
response to ligand binding and ATP hydrolysis resulting in release the ligand into the
extracellular fluid. Drug binding occurs when the protein takes an infaandg
conformation observed in-p such as those found in mouse and Caenorhabditis elegans
P-gp X-ray structures resulted in the absence of nucleotide (Aller et al., 2009; Jin et al.,
2012). This is followed by a significant structural change to an outfeamg
conformation such as thene exhibied by the Xray structure of Sa866 with bound

nucleotide (ADP) (Dawson and Locher, 2006), when drug release takes place (Fig. 2.3).

This conformational change is enemgpendent process. AR activity of Pgp is
stimulated by the transporteldugs and the energy result from ATP hydrolysis is used to

pump substrates across the cefimirane (Sarkadi et al., 1992).

ATP hydrolysis

Inward-facing conformation Outward-facing conformation
(mouse P-gp) (Sav1866)

Figure 2.3: Conformational changes of ATRbinding cassette (ABC) exporters. The 3Btructure of
mouse Pgp in the inward-facing conformation and the homodimer Sav1866 in the outwardacing

conformation (Martinez and Falson, 2014).
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2.2.2 Expression and localization oP-gp

P-gp found in most organisms from bacteria to humans (Ambudkar et al., 2098). P
was initially studied as an essential mechanism conferring multidrug resistance in cancer
cells (Bosch and Croop, 1996; Leonard, 2003). Now, it is well establishe®-gmis
expressed not only in tumour cells, but also in numerous normal tissues including the
apical membrane of epithelial cells of small and large intestine, the bile canalicular
membrane of liver hepatocytes, and the luminal membrane of proximal tedmadr
epithelial cells. In addition, it is an important part in blbgsue barriers as blodlrain
barrier, bloodtestis barrier and maternal fetarrier of the placenta (Fromm, 2000;
Demeule et al., 2001; Fricker and miller, 2004; Fromm, 2004p B also expressed in
cardiac endothelial cells, thereby limiting drug entry into the heart. There is evidence that
inhibition or induction of Ryp leads to pronounced drug interactions in humans
(Westphal, et al., 2000).

Gao et al., study the expressiohP-gp along the porcine orglastrointestinal tract and

they demonstrated that higher amount efPis expressed in jejunum and ileum
compared to other Gl tract locations. This indicates the importance of studying the role of
P-gp in the absorption ofrally administered drugs as the intestine is the major site of
absorption (Gao et al., 2014).

Moreover, there are many factors affect expression efp Psuch as genetic
polymorphism (Hoffmeyer et al., 2000), ag€u{ et al., 2009), and inflamatory
conditions (Petrovic et al.,, 2007). In addition, it is possible thap Rexpression is
induced under a pathological conditions. For exanmiplgp overexpression is found in
many tumor cells transformed from tissues thatrese Pgp inherently (e.g., colon
cancer) and in tumor cells transformed from tissues that do not normally expgpss P
(e.g., breast cancer) after exposure to chemotherapeutic agents (Hochhauser and Hatrris,
1991), which contribute to multidrug resistaneechanisms and impairs delivery of
anticancer drugs to target cells (Hennessy and Spiers, 20@&fefoe, P-gp inhibition is

an effective strategy for compating multidrug resistance and improving therapeutic
outcome (Szakacs et al., 2008).similar obsevation was found in case of epilepsy,

experimental data indicate that seizure activity is the main factor upregulagimgnRhe
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epileptic brain (Volk and Loscher, 2005; Hoffmann et al., 2006; Liu et al., 2007) resulted
in limit bioavailability of antionvulsants drug in the brain (Talevi and BriBlanch,
2013) and fail to control the symptoms condition known as drug resistant epilepsy
(Zhang et al., 2012). Othestudies have shown that HIV exposure within asvitro
intestinal model resulted in incre®@ expression of-Bp in a cellspecific manner, this
alteration may contribute, in part, to decrease antiretroviral concentrations within-the gut

associated lymphoid tissue of the Gl tract in HIV infection (Ellisa et al., 2014).

2.2.3 Interplay between Pgp and intestinal metabolizing enzyme CYRa4

P-gp and CYRso provide a protective mechanism that prevent accumulation of toxic
xenobiotic in the body by enhancing there excretion and metabolism. The cytochrome
Psso (CYP) family of enzymes is responsibler f@xidative metabolism of many
endogenous and exogenous chemicals. Although liver is the main site fedépéRdent
metabolism, significant CYP activity also observed in the extrahepatic tissues. In the Gl
tract, mainly in small intestine, CYP enzymesypdan important role to the overall first

pass metabolism of several drugs (Richter et al., 2001; Kato, 2008).

Although there are various enzymes in the gut wall which may contribute to gut first pass
metabolizm (Watkis et al., 1987), CYE\ is the most lbundant intestinal metabolizing
enzymes, they occupy more than 70% of the small intestinal CYP enzymes among which
CYPsa4 represents the primary type (De Waziers et al., 1990; Benet et al., 1999; Zhang et
al., 1999).

The overlap between apical gut effltransporter Ryp and metabolizing enzymes within
enterocytes has been welaracterized using in vitro and in vivo systems (Cummins et
al., 2002; Benet et al., 2003)-gp and CYRa4 are celocalized in tissues such as small
intestine and liver with majomportance for drug disposition (Watkires al, 1987).
Therefore, studies on the expression and functiongp Bnd CYRBa4 along the Gl tract
have been performed to assess the effect ofsYéhd Rgp on drug absorption at
different Gl positions (Moulyand Paine, 2003). In addition, most structurally unrelated
drugs which have been identified ag)P substrates are also substrates of the major drug

metabolizing enzyme CYi, (Wacher et al., 1995). Consequently, it was suggested that
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P-gp and CYBa4 are thought to act in concert to prevent entry of orally ingested
xenobiotics into the body and limit its oral bioavailability (Fig. 2.4) (Benet and Cummins,
2001; Wacher et al2001; Kivisto et al., 2004).
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Figure 2.4: Functional interaction between Pgp and CYP3,, in enterocytes. (1) Absorption of an
orally administered drug from the lumen of the gastrointestinal tract into the enterocyte. (2)
Intestinal metabolism via CYPsa,. (3) Efflux of the parent compound and/or its metabolite from the
enterocyte intothe gut lumen via Rgp, which is located in the apical membrane of enterocytes. (4)
Translocation of drug and/or metabolite across the basal membrane of enterocytdsdémm , 2003

2.2.4 The role of Pgp in the pharmacokinetics

A comprehensive dissectioma understanding of the physiological roles of protein
transporters is important to evaluate pharmacokinetic parameters of orally administered
drugs including bioavailability, exposure, clearance, volume of distributionhalfitife
(Shugart and Benet0R9).

P-gp export mechanism plays a protective role that allovgp o detoxify cells by
preventing xenobiotics from entering susceptible organs (Szakacs et al., 2008). In

contrast to this beneficial effect;dp is well identified as one of the main fait that
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may affect negatively on drug pharmacokinetics (Krishna and Mayer, 2000; Fardel et al.,
2012).

Pharmacokinetic alterations may occur in drug absorption, distribution, metabolism, and
excretion(ADME). Expresssion of ¥p in the GIT spacially inhe small intestine lead to
decrease absorption and bioavailability of many oral administered dvagsd et al.,

2005 Varma et al., 2010). Drug distribution also affected fypRsince it functions in the
blood-brain barrier and prevents brain penetratad many drugs (Mahar et al., 2002;
Broccatelli et al., 2012). Otherwise, involvement ef?in drug metabolism was studied
since Pgp and CYP45§) have linked functions in liver hepatocytes and intestinal
enterocytes (Darwich et al., 2010; Pfeifer et al., 2014). In additigp Bnticipates in

drug elimination since 4p is localized in the bile canaliculi and renal tubules (Shugart
and Benet, 2009

Furthermore, R)p has been implicated in cellular resistance to anticancer drugs since P
gp is usually overexpressed in tumor cells and can transport numerous structurally
unrelated drugs out of the cancer cells, resulting in the multidrug resistisiizR) (
phenomenon, which is believed to be the main cause of chemotherapeutic failure (Perez
Tomas, 2006; Hennessy and Spiers, 2007). Therefore, avoidioyg tPansport is
interested by oncologic field to improve therapeutic outcome (Choi, 2005).

Broad subtrate specificity of Bp and its localization in numerous barriers and
pharmacokinetic related organs, make it an important target forddugginteractions.
When several drugs are -edministered, one of these drugs may alter the ADME of
another drug de to interact with Bjp and modify its activity, thus leading tmdesired
adverse reactiorend toxicity or even decrease therapeutic outcome (Aszalos, 2007).

2.2.5 The role of Pgp in intestinal absorption

The potential role of p as a limiting faar in drug absorption has been the subject of
many investigations. Both the broad substrate specificity -gp Rand the strategic

localization of this transport protein at the brush border in the intestinal mucosa may be
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critical factors providing an aciv barrier against efficient absorption of many toxic

substances and also various clinically important drugs (Hunter et al., 1993).

The clinical role played by-Bp on absorption is usually studied by observing the effects
of P-gp altered activity, eithenipeople who have genetically determined low activity of
P-gp or who using chemical modifiers (inhibitors and inducers)-ghPThese studies

have revealed many interesting and important characteristicgof P

Dahan and Amidon, examined the effect destinal Pgp in the proximal jejunum and

the distal ilium segments of intestine on two compounds, famotidine and cimetidine using
in situ intestinal perfusion model in rats. The results of this study showed different
famotidine and cimetidine permeab#isi in these segments with significantly decreased
permeability seen in the distal segment compared to the proximal segment, corresponding
to the higher Ryp expression observed in the distal segment. However, inhibitiomgpf P

by verapamil led to a sigmifant increase in permeability for both compounds in the distal
ileum segment, while no significant difference was seen in the proximal jejunum (Dahan
and Amidon, 2009).

Otherwise, a human clinical study by Greiner et al. showed that inductiorgpfly
rifampin decreased the absorption of orally dosed digoxin, even though digoxin is not

metabolized by CYPs in humans (Greiner et al., 1999).

Recently, Choi and Song study the effect o in pharmacokinetics of orally
administerd phenformin in the presersned absence of verapamil. The data suggested
that verapamil increase phenformin absorption ag.x @nd AUC of phenformin

increased due to increasing plasma concentration (Choi and Song, 2016).

Inhibitors of intestinal Ryp have been found to increatbe absorption of many drugs,
which in some cases (e,g., digoxin) can lead to toxicity. On the contrary, inducers of P
gp, such as rifampin, can reduce the absorptiorggd Bubstrates and in some cases (e.g.,
cyclosporine) can lead to dangerously lowteebapeutic blood concentrations of a drug.
(Greiner et al., 1999; Valizadeh et al., 2012).
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2.2.6 Rgp substrates

P-gp substrates identification is fundamental for early ADMET screening, as
recommended by FDA guidances due to the essential roleggpfiPpharmacokinetics,
toxicokinetics, and toxicity of many clinically important drugs (FDA, 2012).

P-gp is a highly flexible protein recognizes large numbers of chemically and structurally
unrelated compounds and pump them out of the cellular membrane.olyspqzificity

of P-gp suggests the existance of multiple binding sites with different affinities for
distinct compounds, although this still remains poorly understood (Globisch et al., 2008;
Gutmann et al., 2010; Liu et al., 2013; Sharom, 2014; Wong,e2@&l4; Chufan et al.,
2015).

P-gp substrates are usually organic molcules with size range from 400Da to 1900Da. The
highest number of compounds are unionized or weakly basic and some are acidic in
nature (Mizuno et al., 2003; Fromm, 2004). In additiomuanber of researches indicate

that many diverse molcules sharing a marked hydrophobicity are transportegpby P
(Szakacs et al., 2006). On the other hand, experimental data showrgihaickve site
comprises mainly hydrophobic and aromatic residuekei(Adt al., 2009). This explains

why lipophilicity is correlated with Bp substratdéikeness and indicate that substrate
binding is stabilized by lipophilic and stacking interaction between aliphatic and aromatic
P-gp residues surrounding the molcule.<sTis also supported by Palestro et al. when they
study saquinavir binding into-§ and the result shows that binding affinity is due to

lipophilic nature of Pgp aromaic residues (Palestro et al., 2014).

Moreover, Pgp recognizes a number of endogenouysithogical compounds and
exogenous drug compounds. Endogenous substrates are such as steroids, lipids, bilirubin
and bile acids (Liang et al., 2015). However exogenous substrates include numerous
drugs as digoxin, fexofenadine, indinavire, vincristindclugine, topotecan, paclitaxel

(FDA, 2016 and other anticancer drugs (Bansal et al., 20089p B also responsible for

ef fl ux o-lblockersa asylabebalol (Abushammala et al., 2006), propranolol

(Abushammala et al., 2012), and acebutolol (Terad, €it%96). Beside physiological

17



compounds and drugs, some environmental chemicals, to which human are commonly

exposed, are also substrates @fP(Fardel et al., 2012).

2.2.7 Rgp inhibitors and inducers

P-gp inhibitors have been intensively studied asepttal MDR1 reversersThere is
evidance that ¥gp inhibition has a great impact on absorption and disposion of its
substrates (Lin, 2003). However, inhibition of this protein may potentiate-ditgy
interaction but target inhibition is considered al foo improve drug therapy as it allows

drug penetration through different tissue barriers that expregs R also a potential
strategy to reverse drug resistance as in anticancer (Pleban and Ecker, 2005) and

antiepileptic drugs (Aronica et al., 2011)..

P-gp inhibitors are classified into four generations depending on their potency, selectivity
and drugdrug interaction potential, and not according to a chronologic development. The
first and second generation inhibitors can exert therapeutic effects tbdne Rgp
inhibition but second generation derivatives underwent structural modification which
decrease its therapeutic activity and increaggp fhhibitory activity. Examples of first
generation are verapamil and cyclosporine A, however, dexverapamiexniguldipine
belong to second generation. The third generation include inhibitors with the highest
selectivity and affinity to Rp at nanomolar concentration such as tariquidar. Finally, the
fourth gereration includescompounds extracted from natural origins and their
derivatives; surfactants and lipids; peptides and dual activity agents which obtained by

diverse strategief®r P-gp inhibition(Palmeira et al., 2012).

Another strategy for #p inhibition is the usagef anti-P-gp monoclonal antibodies such
as MRK16 (Ushigome et al., 2000). In addition, RNA interference technology which
target the gene expression itself is a novel approach for seleegenibition (Nieth et

al., 2003; Pichler et al., 2005).

On the oher hand, several drug delivery systems such as nanoparticles and liposomes are

able to bypass -Bp efflux pump. Therefore, eadministration with anticancer drugs
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result in increase accumulation inside target cells and it also act as reservoir for both

inhibitors and drugs for sustained therapeutic effect (Montesinos et al., 2012).

In contrast, other studies usedghp inducers as dexamet hasone
(Jambhekar and Breen, 2009), and rifampin (Putnam et al., 2005) to evaluate the effect

of P-gp in absorption phase of-§p substrate. However, minor researches performed in

this field as Pgp inducers decrease bioavailability and absorption -gp Bubstrates

which have no application in clinical therapy.

2.3 Models for studying intestinal drug atsorption

Since drug absorption potential has become a more important criterion for decisions
about drug development early in the drug discovery process there is a need for reliable
screening methods to assess intestinal drug absorption. The panel mfueshsed for

the prediction of intestinal absorption is very large including physicochemical models, in
silico computational models, in vitro models (eedised and tissue based), in situ models

of intestinal perfusion and in vivo models (Bahedt al.,2001; Liu and Hu, 20Q2
Fagerholm, 2007; Zhou et al., 2012; Sjogren et al., 2013).

As the intestinal absorption process depends on a multitude of parameters (Jamei et al.,
2009), the determination of intestinal permeability of compounds rarely determirzed i
single universal model accounting for all these parameters. Therefore, combination of
different models which vary from low throughput to high throughput screening have been
established irorder to obtain better insigh intestinal drug absorption (@h et al.,

1997; Lennernas, 2007).

It is clear that intestinal absorption study is difficult to be directly performed in human. In
addition, whole animal studies cannot be used as a screening tool in an early development
stage. On the other hand, a rapide and resource sparing technology to predict human
oral absorption has been a goal of biopharmaceutical scientists for generations (Bohets et
al., 2001). Hence, information with the in silico, in vitro, in situ and other models can be
implemented in hunraexposure models to a more optimized and realistic health risk

assessment.
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Among hese methods in siiatestinal perfusion technique is one of the most frequently
used technique which provides conditions closed to what is faced following oral
administraion in vivo (Ho et al., 2008; Dezani et al., 2016).

2.3.1In silico models

In silico models can help optimizing chemical synthesis early in drug discovery process
since computational methods can lead to the prediction of intestinal absorption based on
the relationships between the structural characteristics of drug, the formulation factors
and human physiology to simulate the Gl absorption of an orally administered drug
(Sugano, 2009). A more accurate prediction of fraction absoRmdén be obtained by

feeding these models with other ittrg (Caca2) or in situ intestinal perfusiomodels.

Several theoretical models of correlation and classification have been developed to study
characteristics of passive permeability (Hou et al., 2006). In silico qbi@as involve
approaches from relatively simple quantitative strucaativity relationships (QSAR) to

the use of complex physiologically based pharmacokinetic and/or pharmacodynamic
models (Dokoumetzidis et al., 2007; Saito et al., 2010; Ishikawa, €042 Lu et al.,

2016.

The approach used for model building, to be valid, should be based on experimental data
that were obtained for a wide range of structurally diverse compounds (training set).
However, the current in silico methods are not asbiglias experimental models, one of

the most critical issues for the successful prediction of absorption is how active processes
should be modeled. In addition, these models is used as a general tool to minimize the
time and cost to select potential cantikdaand also to complement the biological
screening and optimization processes because there is no need to synthesize compounds
(Stenberg et al., 2000; Ekins et al., 2000; Podlogar et al., Spfdren et al., 2016

2.3.2In vitro models

In vitro technigies are simple and convenient to perform. It is easy to control the
experimental conditions and environment, and the results are reproducible. In addition,

they reduce or replace the use of laboratory animals which give benefits in term ethical
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considerattns compared to in vivo animal studies (Polli, 2008; Gaspar and Duncan,
2009).

Various in vitro methods are used routinely to assess the absorption potential in early
drug discovery. The success of these models to determine the intestinal absorptive
potential and absorption mechanism of a compound depends on how closely the model
mimics the conditions existing in human intestine. Although it is very difficulteteelop

a single in vitro system that can simulate all the characteristics of the intestinal mucosa,
various systems have been developed which, to varying degrees, mimic the
characteristics of the intestinal mucosa (Balimane et al., 2000). Therefore, a combination
of in vitro models have been used to accurately predict the absorption potential in human

rather than a single in vitro model (Cheng et al., 2008).

In vitro models =mailable to study intestinal absorpti@re cellculture based models
(Caco2), and excised animal tissues (ussing chambedspéll and Karlsson, 2003;
Hamalainen and Frostellarisson, 2004; Miret et al., 2004).

Caco2 cell line, a popular cell culturbased in vitro model, is derived from colon
carcinoma cells (Hunter et al., 1990). These cells differentiate spontaneously in culture
without supplementation of differentiating factors forming monolayers of mature
intestinal enterocytes which act as initegt barrier model for in vitro toxicology studies
(Artursson et al., 2001; Sambuy et al., 2005).
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Figure 2.5 The Caco2 cell permeability method(Liu et al., 2018.
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Although these cells express a large number of enzymes and transporter proteins which
was showed to be closer to that of the human small intestine rather than to that of the
normal colonocytes (Englund et al., 2006), the exprassfomost drug transporters in
Caco2 cells is lower than human enterocyte (Seithel et al., 2006). Another stadnt
suggested that there are variations between gene expression profiles of nrassfor
epithelial cell lines like @co2 and normal human intestinal epithelium (Bourgine et al.
2012).

Caco2 cell monolayers have been used for studying active intestamelporters such as
drug efflux by Pgp and thus led to studying the role ef in intestinal drug absorption
as well as testing diverse drug classes-gp Bubstrates (Tanaka et al., 199lle and
Walle, 1998; Alsenz et al., 1998; Hochman et aD00. However, @co2 cells lack
expression of some major drug metabolizing enzymes such ag£OM#iich is abundant
in human enterocyte and often plays a role in intestinal drug metabolism, these cells have
been used to study the activity of C¥Pby transfection with the CYR, gene and
stimulaton by butyrate or treatment ofa€o2 cells during culture with 1a,25
dihydroxyvitamin D3 to obtain an increase in GXPmRNA and protein which useful
for examination of newly developed pharmaceuticals (Cumetias., 2001; Schmiedhn
Ren et al., 1997).

In spite of the high implementation of &o2 cell model in pharmaceutical and
toxicological fields, several limitations have been reported. First of all the reproducibility
of the cells in which different culte-related conditions, such as the type of animal serum
used, the supplements added to the culture media, the passage number and the source of
the clones increase the intrinsic variability of the Gaccells utilized in the different
laboratories making ifficult to compare results between laboratories (Sambuy et al.,
2005; Zucco et al., 2005). Secondly, the absence of mucus layer and theeresen
unstirred water layer in &co2 cells may act as a barrier for lipophilic drug transport
(Hidalgo et al., 291).In addition, quantitative underexpression of important transporters
has been reported in Ca2acells compared to that in vivo. For example, some substrates
of di pepti de t r-kctampaatibivtie (csphalexinc dmoxiailbn) viere

poorly permeable across Ca@ocells despite the fact of completely absorbed in human
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(Balimane et aJ.2000Q. So that, in extrapolating data from such in vitro models to the in

vivo situation should be with cautions.

In conclusion, despite the @abe mentioned lintations, Gco2 cells is a widely used for

screening purpose to predict the intestinabghtson potential of new drugs.

2.3.3In situ models

Many diverse intestinal perfusion technigueave been used as absorption models over
the years. In situ modetdfer many advantages which overcome the principal limitation

of in vitro methods sucls Gico2 or ussing chambers. Although the animal has been
anaesthetized and surgically manipulated in the in situ methods, neural, lymphatic and
mesenteric blood suppk remain stable with expression of enzymes and transporters as
in a live animal (Holmstock et al., 2012). Therefore, more realistic absorption rates are
obtained and comparable to those calculated from blood concentration data in human

following oral drig administration (RukBalaguer et al., 1997).

A fundamental point regarding the in situ intestinal perfusion method is that the rat model
has been demonstrated to correlate with in vivo human data (Fagerholm et al., 1996;
Chiou and Barve, 1998; Salphati al., 2001). Amidon et al. have rdenstrated that
intestinal perfusion methathn be used to predict absorption for both passive and earrier
mediated substrates (Amidon et al., 1988). In addition, the model can be used to examine
concentration dependesaturable transport processes, as well as overall contribution of

paracellular transport to drug absorption (Abushammala et al., 2006).

The main advantage of this model is that the experimental technique is simple,
inexpensive, utilizes readily availablaboratory equipment experimental data result
from a single animal suitable to provide complete quantitative kinetic analysis with
minimal animal to animal variation of the kinetic results (Zakéitania et al., 2007). It

is also relatively robust wheromparel to cell culture Cac@ model(Salphathi et al.,
2001).

In situ rat intestinal perfusion is available to investigate drug absorption rate in which the

dynamics of absorption process were studied by measuring drug disappearance from the
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intestinal lumen following a single pass or continuous recirculation of the drug solution.
However, it is important to know that if significant intestinal metabolism occurs or if the
drug extensively accumulates in intestinal tissue, drug disappearance from theaintesti
lumen will not reflect drug appearance into the blood or drug absorption. Therefore,
several modifications of the in situ technique have been developed for accurately reflects

drug absorption from the intestinal lumen.

Sampling from the mesenteric weis performed, in order to obtain a direct measure of
drug absorption from in situ perfusion experiments. In addition, pharmacokinetic analysis
of differences between drug disappearance rate from intestine and drug appearance in the
portal circulation intcate the intestinal metabolism of the drug (Mols et al., 2009;
Holmstock et al., 2012). By moving the sampling location from the portal vein to the

hepatic vein, additional information about liver figss metabolism can be obtained.

Many considerationshould be taken into account when using in situ techniques. The
choice of anesthetic must be with caution as it has been demonstrated that anesthesia can
have significant effects on intestinal drug absorption (Yuasa et al., 1993). Another
consideration isthe volume of the luminal drug solution as water absorption and
secretion during the perfusion may provide errors in the luminal concentrations and
therefore in the measured absorption. This necessitates tperfasion of a non
absorbed marker such aadiolabelled polyethylene glycol (PEG) 4000, inulin or

mannitol, and fluorescent markers, such as lucifer yellow (Fagerholm et al., 1996).

Otherwise, in situ rat intestinal perfusion is time consuming technique so it is not suited
for screening purposes\evertheless, the model is widely used for the selection of drug
candidates and to confirm results obtained from in vitro soofedrug absorption, such

as (aco2, which lacks certain features (e.g. mucus layer) that may influence drug
absorption. For emple, the enhanced absorption of the antiagegnt adefoviwwhen
administered as the prodrug adefadpivoxil was demonstrated ing€o2 monolayers

and this effect was confirmed with in situ perfused rat (Annaert et al., 2000). In addition,
a high corelation between effective permeability values determined in rat and human

jejunum has been observed (Fagerholm et al., 1996).
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2.3.3.1lIntestinal Perfusion Techniques

The evolution of steady, vascularly perfused preparations of the small intestine has

proved an effective research tool for the investigation of intestinal drug absorption,
transport, and metabolism. This model is simple and surgical process is available in

which the abdominal cavity of an anaesthetized animal is exposed by laparotomy. The

int estinal segment into which drug (Luet per f use
al., 2016)

In closed loop model originally proposed by Doluisio et al., a drug solution is introduced
in an isolated segment of the intestine and absorptimeasured by disappearance of the
absorbed drug from the gut which is observed by analyses the resultant luminal solution

at predetermined points (Doluisio et al., 1969; Hasegawa et al., 1996).

Rats in closed loop methodieighing 250350 g are fasted owaight and allowed free

water access. The rats are anaesthetized, placed on a heating pad to maintain a constant
temperature of $C and midline incision of the abdomen is performed to identify the
small intestine. The chosen loop of the gut is isolatadnulated, and perfused with drug
solution then returned to the abdomen to allow absorption to occur at body temperature.
Measured portion of the solution are taken for analysis and compared with standard stock
solution. It is important to keep a adequbleod intact during surgery and to keep the
exposed segment moist with saline maintained at body temperature (more detail about the

method is discussed in chapter 3, section 3.4).

On the other hand, dynamic modifications of this approach involving regii@ulof the

drug solution by which the intestine is connected to a peristaltic pump at both ends to
form a loop to simulate the in vivo movement of intestinal luminal fluid. As a result, the
probability of absorption is significantly increased due to ésngtention time of drug
solution in the intestinal lumen (Sv&son et al., 199@rassiand Cadelli2001).

I n the open | oop or Athrough and througho,
designed to evaluate drug absorption with continuous fluid flow down the intestine
(Higuchi et al., 1983). The experimental procedure is similar to that described id close

loop model. However, in this model infusion pump providing continuous perfusion of
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drug solution through the duodenal cannula and perfused solution collected from the ileal
cannula at flow rate of between 0.1 and 0.3 mL/min (Fagerholm et al., 1996rtStewa
al., 1997).

l silicone tube silicone tube

— &P

peristaltic pump

intestinal segment

Figure 2.6. Schematic diagram of intestinal perfusion, A: circular pefusion method with peristaltic

pump, B: singlepass intestinal perfusion with peristaltic pump (iu et al., 2018.

Furthermore, both closed and opened loop techniglles absorption to be measured
separately at different segments of rat intestine, jejunum, ileum, and colon. As a result,
the model can be used to reduce the number of animals utilized for segmental dependent
permeability research without affecting theatity of data obtained (Hu et al., 1998;
Kataoka et al., 2006; Dahan et,@&009. In this type of experiments the original rat
model has been adapted in which the upper small intestine and colon of rats were

perfused simultaneously and samples wereectdll (Tang et al., 2012).

2.3.3.2Modification of intestinal perfusion techniques

Regarding a crucial role of both intestine and liver in the systemic availability of orally
administered drugs, a number of modifications to the original method have been
developed to obtain a more realistic, complete pharmacokinetic analysis of drug

absorption.
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One modification includes the process of intestinal perfusion with venous sampling. The
methodology involves perfusion of an isolated segment with cannulation of the
mesenteric vein that is draining the blood from the perfused intestinal segment. The
method is performed using either clodedp or operoop intestinal perfusion model
(Singhal et al., 1998; Mellaerts et al., 2008).

Although this approach is more congalied, it allows direct measure of drug absorption.

In addition, pharmacokinetic analysis of drug samples collected from the mesenteric vein
can give indication about the intestinal metabolism without interference with hepatic
first-pass metabolism by corapng the differences between drug disappearance rate in
the intestinal lumen and drug appearance rate in the portal circulation (Okudaira et al.,
2000).

Furthermore, this technique has been used to investigate the impaeadrinsostered
metabolites orefflux inhibitor on the intestinal metabolism (Johnson et al., 2003).
Effective permeability (B) of K77, a substrate for both-gp and CYRa, based on
luminal disappearance rate was higher thapn d3timating from the mesenteric vein
sampling which ingtate significant intestinal metabolism. This result was confirmed by
co-administration of GG918, a selectivegp inhibitor, in which higher & was observed

with examining the mesenteric vein samples (Cummins et al., 2003).

One drawback of this method ithat once blood flow from the mesenteric vein is
established, substantial volumes of donor blood is infused at the same rate via infusion
through a jugular vein cannula to keep the blood volume of the animal condtastet

al., 2009.

A further modifcation of intestinal perfusion techniggliis the cannulation of portahd
hepatic veins for portal and systemic sampling respectively. This approach is particularly
useful for evaluation the relative contribution of intestinal versus hepatiepéisst

metabolism (Gardemann et al., 1992).
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Figure 2.7: Possible sites for vascular cannulation in rat during the experimental procedures of

different intestinal perfusion techniques Ehrhardt andKim, 2008.

In spite of the fact that there are numerous in vitro and in situ models to predict
absorption and permeability in small intestine, there is less familiarity concerning the
large intestine (Tannergren et al., 2009). Recently, Lc2gydlo et al., develops and
validated in situ technique in rat colon based Daluisio method to check the
applicability of the rat colon model for controlled release drug screening (L-dsnyléo

et al., 2015).
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2.3.3.3Rats as a model for intestinal absorption study

Animal models are used as an alternative tool for prediction of human drug absorption.
The animal models used for experimental research are either small animals such as rats,
mice, guinea pigs and rabbits or large animals such as dogs, goat and primatesyGenerall
mammals have similar anatomy, physiological, biochemistry and cellular structure to
human but have different size and appearance. Small mammals are considered as
physiological models for large mammals for prediction pharmacokinetic characteristic of
drugs (Mordenti, 1991).

For intestinal absorption study, understanding the similarities and differences in
absorption capacity and Gl physiology betweeecsss is helpful whepredicting theF,

in humans. Although intestinal mucosal membranes are compaaahbdss species
(Chiou and Buehler, 2002), expression levels of drug transporter proteins and intestinal
metabolizing enzymes could differ among these species (Chiou and Barve 1998; Cao et
al 2006).

Upon comparing the intestinal physiology of rats to huwsnaats have shorter small
intestinal length (0.8 vs. 7m), radius (0.18 vs. 1.75 cm) and transit time (1.5 vs. 3 h).
However, similar intestinal pH and total bile salt concentration were reported (Davies and
Morris 1993; Kararli 1995). Furthermore, ratsdahumans have similar levels of
expression of small intestinal transporters and drug absorption profiles for compounds
that undergo active transport (Cao et al., 2006).

Cao et al. studied oral bioavailability and intestinal permeability in both humaraand r

for a number of drugs having different absorption mechanisms. No correlation was
observed in the bioavailability between rat and human, while a correlation was found
with R = 0.8 between human and rat intestinal permeability of drugs with both €arrier
mediated absorption and passive diffusion mechanisms. Based on these observations, it
was concluded that perfusiggermeabilitydata from rats could be used to predict drug
absorption from the human small intestine after oral dosing (Cao et al., 2006).

Another study was performed by Salphathi et al. for the estimation of effective
permeability for 14 compounds using different techniques. The ssitunsingle pass
intestinal perfusion technique provided a greater correlation with intestinal absorption in

man than other techniques like€2 cell lines (Salphati et al., 2001).
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Similar results were shown by aher study which also usesinglepass intestinal
perfusionin rats for permeability estimation. A strong correlation was found between rat
and human permeability coefficientefPwith R* = 0.93. Subsequently, the fraction dose
absorbed in humarF§) was estimated and predicted after oral dosing and also high
correlation was observed between rat and humar (R91) (ZakerMilani et al., 2007).
Therefore, rat is considered acceptable animal model for prediction of the human
intestinal permeability and fraction of dose absorbed following oral administration of

drugs especially when intestinaérfusion technique is applied.

2.3.4 In vivo models

In vivo human studies are generally considered a reference technique for estimation of
absorption or other pharmacokinetics. However, these studies give more accurate and
reliable results, it cannot be used routinely during drug development and evaluation due
to complexity, high cost, and ethl issues associated with Tthere are various isolated
intestinal perfusion techniques reported in human to evaluate drug atsogpidl
bioavailability including open, seraipen, or closed loop during surgery, colorectal
perfusion, and colonic load via endoscope (Knutson et al., 1989; Raab et al.,, 1992;

lennernas et al., 1992; lennernas et al., 1997).

In vivo evaluation of drug absption in laboratory animalgan be estimated from
bioavailability studies in which bioavailability can be calculated from the ratio of the
plasma AUC dkr oral and IV administratiori-urthermore, the absorption process is
basically an interaction betwedhe drug and iblogical membrane. Regarding this

fact, permeability and absorption across the GIT should be similar across species due to
similar membrane metabolism. However, due to differences in physiological factors such
as pH, Gl motility, transitime, and transporters expression, extrapolation of animal data

to human should be performed withution (Balimane et al., 2000).
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2.4 Acebutolol Hydrochloride (ACH)

ACH i s a -adreriergic receptoe antagonist, it has been greatly used worldwide
for many years. It possesses intrinsic sympathomimetic activity, membrane stabilizing
effect, and cardiosel ect i vi tblpckefsBxern thére r d ,
function by competitively antagonize the action of catecholamine neurotransmitters
epinephrine and norepinephrine through there structural similarities which leads to

decrease heart rate, strok volume, and cardiac oltdpmdy, 2013).

ACH has been widely used in the management of hypertension, angina pectoris and
cardiac arrhythmiagMartindale, 2009). In addition, recent clinical studies suggest ACH
as a firstline treatment of infantile subglottic hemangiomas due to its advantages in
terms of administration as ACH could be easily administered in oral form-arxdeg

only with a dos that was adaptable according to the weight of the child and showed no
side effects (Blanchet et al., 2010).

ACH IS wel | tol erated as mo st adverse
discontinuation of therapy. Reported side effects such as dizzinadache, fatigue, and

Gl upset which ar e a -bckemmidowever,iovbmlosedf AGHc t s
assiociated with serious side effects include extreme bradycardia, advanced
atrioventricular block, hypotension, sever congestive heart failure, Hwspasm, and
hypoglycemia De Bono et al.,1985Harvey, 2013). In addition, antinuclear antibodies
(ANAs) and systemic lupus erythematosus were detected in hypertensive patient treated
with ACH (Burgess N., 1981). Reports of acebutaholuced subacute taneous lupus
erythematosus were rare (Fenniche et al., 2005).

Clinical studies regarding the safety of chronic use of ACH in the treatment of cardiac
arrhythmias demonstrated that ACH has lbeign safety profile and its use at effective

antiarrhythmic dees do not incur a serious risk of proarrhythmic response, myocardial

r

t

19

o

depression, or bronchospasm (O6Reill vy, 1991)
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2.4.1Physicochemical properties of ACH

ACH i s aadrenorecemor hlocking agent chemically described-f&adetyt4-
[2-hydroxy-3-(propan2-ylamino)propoxy]phenyl]butanamide  hydrochloride, having
structural formula showm Fig. 2.8 ACH is always present as hydrochloride salt with
chemical formula gH2gN204.HCI (BP, 2013).

O« _CHs
H OH
o) - _N_ _CH
/\)k CH3
HsC N
H

and enantiomer

Figure 2.8 Chemical structure of ACH (BP, 2013)

ACH is optically active and is available in dosage forms asmac mixture, although its
b-blockade activity resides predominantly withe®antiomer (PiquetiMiller et al.,
1991).

The structur al di v er s rbtogkersagmopnrgsultsd imighdy s bel on
diversed physicochemical and pharmacological properties. However, for the function of

a -blocker it's essential for the compound to contain two characteristic groups in their
structure alkanolamine and aromatic ring. Alkanolamine responsiblédoe alkaline

properties while aromatic ring responsible for their lipophilic character (Drayer, 1984;

Labrid et al., 1989).

ACH (a hydrochloride salt) is white or almost white, crystalline powder which is freely
soluble in water and in ethanol (96%), vehghtly soluble in acetone and in methylene
chloride. The salt has a molocular weight of 372.9 g/mole and its melting point is about
143C (BP 2013). ACH is relatively hydrophilic with an octanol: buffer distribution
coefficient of0.7 (Woods and Robinadl981; Arendt et al., 1984).
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ACH stability was studied in different pH media and results indicate that ACH is
susceptible for degradation in both acidic and basic environment (Krzek and Kwiecien,
2006; Kwiecien and Krzek, 2008).

There are many identifitan techniques used to examine ACH including ultraviolet
absorption spectrophotometry within spectra range i23%0 nm, infrared absorption

spectrophotometry, and thin layer chromatography (BP, 2013).

2.4.2Pharmacokinetic properties of ACH

ACH is absobed from the GIT following oral administration with AUC 37% of IV
equipotent dose and peak plasma concentration occur withih 2Singh et al., 1986;
Gulaid et al., 1981).

In human, absolute bioavailability of ACH is approximately5886 of oral doses @uto
significant hepatic firspass metabolism. It is metabolized first to primary amine by
hydrolysis of its butyramide group then undergoueschtylation to give a major
metabolite diacetolol (DA) that possesses pharmacologic properties similar toothose
the parent compound (Gulaid et al., 1981; Roux et al., 1983a). There is evidence that
ACH is a substrate for the efflux transporterg® which may also contribute to its low
bioavailability (Terao et al., 1996).

Approximately 1119% of ACH bound tglasma proteins (Coombs et al., 1980). Low
concentration of ACH was observed in CSF due to less BBB penetration as it is relatively
hydrophilic and this explains why AGH has |
blockers (Zaman et al., 1981). ACH apmehto be eliminated from plasma in a two
compartment model and this was confirmed from urinary excretion rate data initial and
terminal half lives of ACH about 2 and 11 hrs respectively (Gulaid et al., 1981). ACH

and DA are eliminated by both urinary afacal routes. Furthermore, they have been

observed in human bile and saliva. The urinary excretion of ACH and DA represents 20

30% of the administered dose (Gulaid et al., 1981; Gabriel et al., 1981; Zaman et al.,

1981).
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2.4.3Pharmacokinetic studiesof ACH

ACH exhibits multiple peaks in plasma concentration time curves after oral
administration to rats, the first peak at about 0.25 h and the second at about 1.5 h
(Mostafavi and Foster, 1998). This phenomenon has been reported for many structurally
diverse compounds such as pafenolol, cemitidine, and veralipride and attributed to many
causes (Lennernas and Regardh 1993; Mummaneni et al., 1995; Plusquellec et al., 1987).
Interestingly, the absence of mple peaks from the rat after IV and t#®se of ACH

suggests involvement of the GIT (Mostafavi and Foster, 1998).

Other study was performed on rats to explain the multiple peak phenomenon of ACH by
studying the effect of bile, food, route of administration and intestinal metabolism on the
pharnacokinetics of ACH. The results of the study shown that ACH was absorbed more
rapidly afterlp dose than oral dose, but the values were not significantly different
among the various routes of administratidW',(IP, and oral).IP dose has higher
bioawailability compared to oral dose and this might have related to higher portal
concentration afterlP doses, causing saturation of liver enzymes. Hoddced
decreased in AUC value of ACH in fed rats, so that fed rats were shown absolute
bioavailability lover than fasting rats but no effect on peak plasma concentr&tigr (

or time toCnax (tmax) Was observed. Bile duct ligation has no effect on the absorption
pattern of ACH. In addition, intestinal metabolism of ACH was not observed (Piguette
Miller and Jamali 1997).

Otherwise, active secretion of ACH across the gut by efflux transportgp)(Ras been
reported (Terao et al., 1996) but there is no study describes to which degree this efflux

transporter affect the absorption and bioavailability of ACH.

On the other hand, pharmacokinetics of ACH after oral administration isdépendent
kinetics due to lack of predictability following repeated dosing based on single dose data
because after multiple oral administration it was observed that ACH accumalades
higher extent than that predicted by linear pharmacokinetics which may suggest a

saturable firspass metabolism. on the contrary, the pharmacokinetic parameters of ACH
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at steady state aftédy administration could be predicted by using the singleeddata
(Mostafavi and Foster 1998).

Other study was performed to investigate the saturable absorption of ACH by increasing
the dose of ACH to 25fbld through the everted gut segment in rat. No alteration in the
absorption kinetic of ACH was observed wititreasing the dose which ruling out the

possibility of saturable absorption (Piquettédler and Jamali, 1997).

The effect of age on the pharmacokinetic parameters of ACH was investigated in
hypertensive aged patients (age: 79.4 + 3.8 years) and in ymaithy subjects (age:
23.4 + 0.7 years) after intravenous (0.35 md.kglus) and oral administration (400 mg).
After IV administrationV4 and Cl decreased significantly in elderly (1.5 Lkg6.2
mL.min".kg') compared to young subjects (2.4 L¥kg.8 mLmint.kg?). After oral
administrationCnmax and AUC increased sigficantly in elderly (28.03 pg.mit; 163.1
pg.h.mL™?) compaed to young subjects (9.68 pg.iL57.5 pg.h.mL™). ACH and DAty

was significanly higher in elderly patients (11.6 h; 14.8 h respectively) than young
subjects (7.2 h, 12 h respectively). These data suggest a possible accumulation of ACH
and DA in elderly, propably due to decreases in the-fimss metabolism and renal
function (Roux et al., 1983b).

The influence of renal failure on plasma levels and urinary excretion of ACH and DA
has been studiedi22 subjects following acute l'¥nd chronic oral administration of
ACH with glomerular filtration rate (GPRbetween 3 ad 127 mLmin™. ACH mean
eliminationt;, was about 10 h independent on degree of renal impairmenty,pPand

AUC increased from (12.8 h; 14r@gh.L™. respectively) in subjects with normal renal
function (GFR> 90mLminY) to (24 h, 81.4 mé.L™-.min™ respectively) in subjects with
renal failure (GFR €0 mLminY). It is concluded that renal elimination is the main route
of DA excretion but not the parent compound (ACH) thus considerable accumulation of
DA in the presence of different degrees ofaleimpairment which has about the same
activity as the ACH. Therefore, it is necessary to reduce the dose of ACH in the presence
of renal impairment (reduction by half of the normal daily dose in patients with GFR
between 30 rd 10 mLmint and by three carters when GFRess than 10 mimin™)

(Kirch et al., 1982).
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The effect of hepatic dysfunction was investigated using animal and human models. The
pharmacokinetics of ACH in rabbits with moderate and sever carbon tetrachloride
induced hepatic failure were studied. The plasma concentration of ACH and DA
increased sigficantly in rabbits with induced hepatic failure compared to normal rabbits.
In normal rabbitske was (0.118 + 0.031 1) but in rabbits with moderate and sever
hepatic failure it decreased significantly (0.079 + 0.02%hd 0.071 + 0.038H. V4 in
normal rabbits (3.78 + 0.82kg™) is decreased significantly in rabbits with moderate and
sever hepatic failure (2.54 + 0.42kg™ and 2.34 + 0.45L.kg™"). Cl decreased
significantly in rabbits with moderate and sewepatic failure (1.07 + 0.39 ' kg™

and 0.85 + 0.32.h™.kg™) from those obtained in normal rabbits (1.72 + .28".kg™).

The AUC of ACH increased significantly in moderate and sever hepatic failure rabbits
compared to that obtained in normal rabbits. Metabolite percentage eateased
significantly in rabbits with induced hepatic failure. All previous data suggest that liver
disease may significantly affect the pharmacokinetics of ACH and DA (Choi and Burm,
2002).

On the contraryClinical study includingnine patients with lier cirrhosis ( age: 59 + 7
years; weight around 65 kg) and nine healthy young volunteers with normal hepatic
functions (age: 21 * 2.5 years; igflat around 64 kg) showed differet results than reported
previously Each subject received 400 mg ACH takdétier an overnight fasting then
different pharmacokinetic parametefdJC24, t1/2, Cmax, tmax, Cr) Were determined from
collected blood and urine samples (Zaman et al., 1985).

No significant differences (P > 0.05) between groups was shown in any ofrémeepers

measured. Furthermore, tA&JCs for ACH and DA in patients who were on drugs that

may i nhibit or induce I|iver met abol i c enzy
comparing with patients not received these drugs. This suggest that liver diseasé does

affect the pharmacokinetics of ACH or its metabolite DA and ACH metabolism is not

considerably affected by chronic liver disease (Zaman et al., 1985).
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2.5Verapamil HCI

Verapamil HCL is a calcium channel blocking agent, chemically described(&g-
dimethoxyphenybs-[2-(3,4-dimethoxyphenyl)ethyimethylaminoj2-propan2-
ylpentanenitrile;hydrochloridéig. 2.9, (molocular weight= 491.1 g/mole).

OCHi,
N OCH,

H,CO N CH; e HCI

CH,
H,CO

Figure 2.9 chemical structure of verapamil HCI (BP, 2013b)

Verapamil HCI is a white crystallinpowder, which soluble in water and methanol but
sparingly soluble in ethanol (9§%BP, 2013b) Verapamil HClhas gynificant effecton

both cardiac and vascular smooth muscle cells. It is used clinically to treat hypertension,
angina pectoris, supraverar tachyarrhythmias, and to prevemgraine Firstdegree
atrioventricular block and constipation are ddependent common side effects of
verapamil (Harvey, 201).

In addition, verapamil HCI has been classified as first generatgmikhibitor (Pémeira

et al., 2012). Many past and recent studies used Verapamil as a tool for studying the
effect of Rgp inhibition on the absorption and bioavailability of many drugs and
significant changes in the absorption kinetic have been observed (Song e2&.CROI

and Song, 2016).

Involvement of Pgp in the absorption of antitubercular drugs was demonstrated using
verapamil HCI as a-gp inhibitor. The results showed that verapamil HCI increased the

serum concentration of rifampin and isoniazid in mouseltiag in accelerates bacterial
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clearance and significantly lowers relapse rates in shorter period of treatment when

compared to mice receiving standard therapy alone (Gupta et al., 2013).

A clinical trial in healthy subjects was performed to investigageetffect of verapamil on
the pharmacokinetics and pharmacodynamics of antithrombic drug dabigatran etexilate
which is a substrate for-§p. The results showed that the bioavailability of dabigatran

etexilate increased when-ealministered with verapail HCI (Hartter et al., 2012).
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Chapter 3

Methodology

3.1 Study design

This study is an experimental analytical study in which the effect-gp Bn ACH
absorption was evaluated usingsitu intestinal perfusion technique. In situ intestinal
perfusion technique was conductechemlthy albinamale rats to study the effeat P-gp
on the absorptionrate constantka,) of ACH when ceadministered with fp inhibitor,

verapamil KCI, attwo different concentration&00 and 400 pg/mL)

3.2 Animals and sample size

Healthy Wistar albino male rats were purchased from Center of Experimental Animals,
Harlan Laboratories(Palestine, 1948). Animals were housed 4 per cage in an air
conditioned room mder constant temperature (22 & Pwith free access to food and
drinking water (Song et al., 2006). Rats were maintained on a 12 hdéghtcycle
(ZakeriMilani et al.,2007). The normal life conditions for taeimals were kept based

on the hternaiond Animal Ethics Committee.

Sample size of rats was 18 with weights ranged betweer8@5%0y. The rats were
divided into three groups 6 rats for each. The first group (control group) received ACH
only as free solution through intestinal perfusion at comagan 260 pg/mL. The second
and the third groups, received ACH 260 pg/mEacbministered with verapamil HCI 200
and 400 pg/mL respectively.

3.3 Instrumentsand materials

3.3.1 Instruments

1 UV-spectrophotometer (Shimadzu UV/Visible Spectrophotometer).
1 Centrifuge (Kokusan, LO3N Series).

1 Balance andHotplate

39



3.3.2 Materials

1 Acebutolol HCI standard from Sigr#ddrich Company
Verapamil HCl ampoule (Securdneach ampule contairs verapamil HCl 2.5
mg/mL in water for injection and NaCl with HCl as pH wasier, Abbott
laboratories Ltd, United Kingdom).

1 Normal saline 0.9% w/v for INhfusion from B. Braun Melsungen AG, Germany.

T Thiopental sodium vialThiopentaf: each vialcontainsthiopental sodium 500 mg,
Rotexmedica, Germaiy

3.3.3 Others

Rat suppder base, light source (lamp),etal scissorsfixing metal scissors, .V set,
cannula 22G, silk suture 0/2 size, needle 2i@nge 2, 10, 60 mLmedical cotton,

surgical blade, roll plaster, gloves, micro pipettes 100 uL, 1000 pL, epperaorf c
(2mL).

3.4 Experimental process

3.4.1 In situ intestinal perfusion technique

An in situ intestnal perfusion procedurewere performedn rats according to the
methods described previously (Doluisio et al., 1969; SarPi&z et al., 1989; Ruiz

Balaguer et al.,997). The experimental procedures were carried out as the following:

1 Wister Albino Male rats (weight, 25800 g) were fasted 1P8 h before

experiment with free access to water.

1 Rats were anaesthetized by administration of an intraperitoneal thiogggatal
mg/kQ).

1 Anaesthetized rats were placed on the fixing plate unligintessource (lamp).
The surgical procedure was initialized by a midline abdominal incision of

approximately 10 cm to expose small intestine and then talwabe cannula were
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inserted arefully through small narrow open at the initiate abdenum and end

of ileum (Fig.3.1).

The cannulas wersecured by ligation with silk suture and the biliary duct also
was legated then the small intestine was returned to abdominal cavity to maintain
its inteqgrity.

The intestinal lumen was rinsed nmgia syringe containing normaaline (37C)

that pumped slowly through the gut via the inlet duodenum cannula and out the
ileal cannula until the effluent solution was free of feces and clear.

After cleanng the intestine the remaining perfusion solution was expelled from the
intestine by air pumped via syringe, and 10 mL of drug solutioninvasediately
introducedinto the small intestine segment by the syringe.

The surgical area was covered with a wdtaropad, and drops aformal saline
(37°C) were added to the cotton to prevent disturbing the circulatory system and
dryness of intestine.

The stopwatch was adjusted ar8D0 pL of the perfused sample wesllected

from both sides each 5 minutes atotal of 30 minutes

The sanples were transferred into 2 mEppendorf tubes, centrifuged and
analyzed by UV spectrophotometer.

Figure 3.1: In situ rat gut preparation for determining K., of drugs from rat intestinal lumen
(Doluisio et al., 1969).
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3.4.2Rats control group

Six rats were prepared by intestinal perfusion technique for ACH absorption study. Each
rat was injected with 10 mL solution containing ACH alone at concentration 260 pg/mL

in normal saline (0.9% w/v). The Perfused samples were caledt®, 10, 15, 20, 25,

and 30 minutes and placed into 2 mL Eppendorf tublee.semples were centrifuged at

3000 rpm for 10 minutegAbushammala et al., 2008)en 200 pL of the supernatant

were transferred and diluted to 3 mL with normal saline to bdyzsth by UV
spectrophotometer on the same day. The absorption was measured at 320 nm against
blank and then theoncentration of each sample waetermined using calibration curve

to determine k, of ACH.

3.4.3 Rats test group

Test group was divided intevd groups. Each group consists of six rats, these rats were
prepared by intestinal perfusidachnique as mentioned previously. The first test group
was perfused with 10 mL solution containing ACH 260 pg/mL in the presence of
verapamil HCI 200 pg/mL imormal saline (0.9% wi/v). The second test group was
administered 10 mL solution containing ACH 260 pg/mL in the presence of verapamil
HCI 400 pg/mL in normal saline (0.9% w/v). The samples collection and analysis was

similar to that described in control gup.

3.5 Spectrophotometric analytical procedure

The analysis of ACH alone and ACH with verapamil HCI was performed using
spectrophotometric determination. Development and validation of new analytical
spectrophotometrimethod forACH analysis by UV is needed in our study as we want to
identify ACH in intestinal luminal fluid free solution. For this purpese | ec tphson o f
preparation of calibration curve, and validatiimearity, limit of detection, lint of

guantification, preaion andaccuracy) were established.

42



3.5.1 Wavelenmnmgth selection (@&

A spectrum of blank solution (intestinal luminal fluid) was recorded.

A spectrum of ACH at concentration 260 pg/mL in normal saline solution was
recorded.

A spectrum of verapamil HGt concentration 400 pg/mL wascorded.

The s ejx@vast320chm ahere naterferencebetween ACH and verapamil
HCI was detected.

3.5.2 Preparation of calibration curve

1 A standard stock solution of ACH 200 pg/mL was prepared by dissolving 50 mg
of standard sample (ACH powder) with normal saline solution in 250 mL
volumetric flask.

1 Intestinal luminal fluid (blank) was collected fromats by intestinal perfusion
technique after administration of 10 mL normal saline without drugs.

1 From stock solution 0,10.2, 0.4, 0.8, 1.6 and 3.2 mL were transferred into 5 mL
volumetric flask and diluted with intestinal luminal fluid (blank) collected
previously to produce a series of ACH concaton 4, 8, 16, 32, 64 and 128
png/mL respectively.

The dilutedsolutions verecentrifuged at 5000 rpm for 10 min.
The absorption was measured against blank at 320 nm.

Plotting of absorption against concentration to produce the regression line.

3.5.3Method of validation

The validation of analytidamethod is important to provimat the method is acceptable
for its intended analytical application. The validation was carried out by establishing
linearity, recovery value, limit of detection, limit of quantification, aecy and within

and between dayrecision as per Internatidn&onference on Harmonization (IGH
guidelines (ICH2005).
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3.5.3.1 Linearity

The linearity is determined by using a minimum at&ndards.

1 Samples of ACH spiked ithh a blank at concentrations -200 pg/mL) and
analyzed as mentioned above.

1 The procedurevas repeated 5 tisein which we have @bsorbancdor each
concentration at the end.

1 The regression line, correlation coefficient, standard deviation of slope and

intercept were calculated.

3.5.3.2 Limit of detection (LOD)

LOD is the smallest concentratidhat can be detected and distinguished from sample
blank and determined by equation LOD = (3.3 * SD) /S.

(SD: standard deviation of the intercept of regression line of calibration coirsigpe of

calibration curve)

3.5.3.3 Limit of quantification (LOQ)

LOQ is the smallest concentration that can be quantitated with acceptable level of

accuracy and precision and determined by equation LO@*SQ) /S.

3.5.3.4 Accuracy

1 Three different concentrations of ACH (8, 32, 128 ug/mL) were prepasid)
intedinal luminal fluid (see section 3.5.2).

1 Three samples per concentration were prepared and analyzed according to the
proposed method.
The concentration was calculated using calibration curve.

The percent of recovery was determined which indicates theedefjeecuracy.
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3.5.3.5 Precision

1 Within -day precision:
Three different concentrations of ACH (8, 32, 128 pug/mL) were prepared using
intestinal luminal fluid as diluent. Three samples per concentration were analyzed
on the same day.

1 Betweenday precision:
Three different concentrations of ACH (8, 32, 128 pg/mL) were prepared and
analyzedOnesample per concentration was assayed once daily for 3 consecutive

days.

3.5.3.6 Stabilityof ACH in intestinal fluid

To evaluate stability of ACH in intestinal fluidt room temperature, 3 different
concentrations of ACH were prepared (8, 32, 128 pg/mL) and analyzed immediately by

UV. The samples then stored at room temperature andlygad over a period of 6 hrs.

3.6 Data analysis

The absorptionrate constant of dg (kap) was calculated directly from the samples of
intestinal luminafluid datausing Sigma Plot 13 program. The program determiggsyk
linear regression analysis of the data obwinexperimentally which indicates
disappearance of drug from intestilumen and demonstratedrug absorptionka, was
calculated assuming that absorption follows foxder kinetic (RuizBalaguer et al.,
1997) according to the following equation:

INC; =INCo T Kgp . t
(InCq: intestinal luminal drug concentration @t postperfusion at time iCy: initial

drug concentration preperfusiandt: time of sampling).

The obtained data were treated and analyzed by using Statistical Package of Social
Science (SPSS) program version ¥&gion 16; SPSS Inc., Chicago, lio) estimate the

pharmacokinetic parameters as follows:

91 Descriptive analysis (mean, standard deviation, relative standard deviation).
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Homogeneity within each group was tested using Duncan test.
kap Values were statistically compared between groups using Bonferroni test and
oneway analysis of variance (ANOVA) test.

1 Results were assumed to be significant foralRe < 0.05.

3.7 Ethical consideration

An approval to conduct the study was obtainedhfRharmacy College Committee.
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Chapter 4

Results

4.1 Analytical procedure

4.1.1 Wavelenmngth selection (@&

UV spectrophotometric scanning (200 00 nm) was carr phed

No spectral interference had been obsebatd/een intestinal luminal fluid (blank), ACH

solution and ver aggadnidl nHCI| Tshoelguetds azew toa tt ha s «

detect the absorbance of ACH in the collected samples.

4.1.2 Calibration curve

A linear relationship was obtained when the@bance of ACH was plotted against the
concentrations in the range of240 0 e€ g/ mL ( ACH spi ked in
collected from rats) at 320 nm. The correlation coefficiehofRhe calibration curves
was 0.999 indicating good linearity.

The regession line quation was Y= 0.007X + 0.003.

4.1.3 Spectroscopic method validation

The proposed method was validated for linearity, limit of detection, limit of

guantification, precision, and accuracy according to International Conference on

Harmonizaton (ICH) guidelinesIiCH: 2005).

4.1.3.1 Linearity

The calibration curve was repeated 5 times. The calculated regression lines parameters in

the rang of 4- 200 pg/mL of ACHare reported in table 4.1.
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Table 4.1: Data of calculated regression lines for ACHn = 5).

Curve No. Slope (S) * 1C¢° Intercept * 107 R?
1 6.9 3.0 0.9999
2 6.9 2.4 0.9999
3 6.9 4.2 0.9996
4 6.8 0.5 0.9996
5 6.9 2.9 0.9997
Average 6.9 2.6 0.9997
SD 0.045 1.4 0.0002

SD: Standard Deviation.

Calibration Curve

& Aaver

ACH absorbance

O T T T T 1
0 50 100 150 200 250

ACH concentration pg/mL

Figure 4.1: The calibration curve of the average calculated regression lines in the range -4200

pg/mL of acebutolol HCI.

4.1.3.2 LODand LOQ

LOD obtained was 67 pg/mL and LOQ wag.03 pug/mL.

4.1.3.3 Accuracy

The recovery obtained from the analysis of 3 different concentrations of ACH in

intestinal fluid (8, 32, 128 ug/mL) was revealed good accuracy for the developed method
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as shown in table 4.2. The Bécovery wasn the range betweedd.87 102.5 % with low

standard deviation.

Table 4.2: Accuracy data for analysis of acebutolol HCI (n = 3).

ACH concentration Concentration of measurement %Recovery
(Mg/mL) (Mg/mL)
1 2 3 Mean + SD
8 8.03 7.89 | 8.029 | 7.98%0.08 99.8%
32 32.09 | 32.38 | 33.25 | 3257+0.60| 101.8%
128 130.78| 129.77| 132.96| 131.17 £1.63 102.5%
SD: Standard Deviation "mean of three determinations

4.1.3.4 Precision

Intraday and interday precision were evaluated by triplicate analysis of ACH solution at 3

differentconcentration levels for &onsecutivalays. The results are shown in table 4.3.

Table 4.3: Intraday and interday precision of acebutolol HCI in intestinal luminal fluid samples.

ACH concentration | Intraday precision (n = 3) | Interday precision (n = 3)
(Hg/mL)
Mean SD | %RSD | Mean SD | %RSD
8 7.98 | 0.08| 1.00 7.95 | 0.06| 0.75
32 32.57 | 0.60 1.84 32.31 | 0.62 1.92
128 131.17 | 1.63 1.24 131.15| 0.12 0.09
SD: Standard Bviation %RSD: Relative Standarddviation

Both intraday and interday precision results in table 4.3 showed accéR8BIe, which

was not more than 2%, indicatiagprecise analytical procedure.
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4.1.3.5 Stabilityof ACH in intestinal fluid (n = 3).

The stability of ACH in intestinal luminal fluidt room temperature was established over

a period of éhrs.and no significant change in concentrasiovasnoticed .

4.2 Determination of absorption rate constant (k,) for ACH alone usingintestinal
perfusion technique

After perfusion of 10 mL ACH (260 pg/mL), dissolved in normal saline, into rats small
intestine using intestinal perfusion technique, the intestinal luminal fluid samples were
collectedat different time intervalss( 10, 15, 20, 25, and 30 min). Each eoted sample

had been analyzed by UV @&fax 320 nm,and therremnant concentrations 8ICH were
determined. In remnant, predicted, and residual concentrations were calculated for all 6
rats according to thfirstorder kinetic model (INC= InCy 7 Kapt). The results of each
individual rat were listed in tables 4.4, 4.6, 4.8, 4.10, 4.12, and 4.14. In addition,
absorption rate constant,fk estimatednclination of the rectahbsorptionline (%Ao),

and correlation coefficient (R) was calculated for eathThe results of each individual

rat were shown in tables 4.5, 4.7 4.9, 4.11, 4.13, and 4.15.

Moreover, In remnant concentrations obtained experimentally from each rat was plotted
against sampling time, and the best fit line was evaluated to detecind¢iaeity of
absorption process. The absorption rate behavior for macdhowedn figures 4.2, 4.3,
4.4,45,4.6,and 4.7.
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Table 4.4: The absorption kinetic resuls obtained after perfusion of 260 pg/mL acebutolol HCl in rat
No. 1.

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.4398 5.4257 0.0141
10 5.3828 5.3843 0.0015
15 5.3171 5.3429 0.0258
20 5.3013 5.3016 0.0003
25 5.2745 5.2602 0.0143
30 5.2184 5.2189 0.0005

Table 4.5: Calculated absorption kinetic parameters of acebutolol HCI in rat No. 1.

Kap %A R
0.4 h* 98.3% 0.982
5.55 -
(2]
S 55
[
% R 5.45 - .
- u
§§ 54
= §5.35 -
(U N
£ 53+ ¢
5} &
< 5.25 -
5.2 T T T T T T T 1
0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.2: Plot of the fit of the apparent Firstorder equation to the data (remaining luminal
concentrations ofacebutolol HCI versus time) in rat No. 1
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Table 4.6: The absorpton kinetic results obtained after perfusion of 260 pug/mL acebutolol HCI in rat
No. 2

Time In. Remnant concentrations| In. Predicted concentrations| In Residual concentrations
(minutg (Hg/mL) (Hg/mL) (Hg/mL)
05 5.4535 5.4448 0.0090
10 5.4021 5.4039 0.0020
15 5.3480 5.3633 0.0153
20 5.3224 5.3227 0.0003
25 5.2907 5.2821 0.0090
30 5.2413 5.2415 0.0002

Table 4.7: Calculated absorption kinetic parameters of acebutolol HCI in rat No. 2.

Kap %A g R
0.486 I 99.07 % 0.993
5.55 -
)]
& 55-
S
£ 5.45 -
8~
- -
§§ 5.4
= §5.35 - ¢
]
E 53-
o
£ 525-
52 T T T T T T T 1
0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.3: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HClversus time) in rat No. 2.
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Table 4.8: The absorption kinetic resuls obtained after perfusion of 260 pg/mL acebutolol HCl in rat
No. 3

Time In. Remnant concentrations| In. Predicted concentrations| In.Residual concentrations
(minutg (Hg/mL) (Hg/mL) (Hg/mL)
05 5.5025 5.4874 0.0151
10 5.4536 5.4542 0.0006
15 5.3974 5.4211 0.0237
20 5.3828 5.3880 0.0383
25 5.3631 5.3547 0.0084
30 5.3276 5.3216 0.0060

Table 4.9: Calculated absorption kinetic parameters of acebutolol HCI in rat No. 3.

Kap %A o R
0.396h™ 98.76 % 0.977
5.55 -
(2]
S 55 ®
g
£ 545
8 ~~
— -
§ g 54 3
= £5.35 -
(U N—r
E 53-
e
< 5.25 -
5.2 T T T T T T T 1
0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.4: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HCI versus time) in rat No. 3.
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Table 4.10: The absorption kinetic resul obtained after perfusion of 260 ug/mL acebutolol HCI in
rat No. 4.

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.4850 5.4720 0.0137
10 5.4305 5.4358 0.0052
15 5.3828 5.4003 0.0175
20 5.3631 5.3648 0.0017
25 5.3378 5.3293 0.0084
30 5.2961 5.2938 0.0022

Table 4.11: Calculated absorption kinetic parameters of acebutolol HCI in rat No. 4.

Kap %A R
0.426 R 98.94 % 0.986
5.55 -
2
% 5.5 - .
£ 545 -
L
— -
S = 54 °
=)
= £5.35 -
]
E 53-
o
£ 5251
5.2 T T T T T T T 1
0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.5: Plot of the fit of the apparent first order equation to the data (remaining luminal

concentration of acebutolol HCI versus time) in rat No. 4.
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Table 4.12: The absorption kineticresults obtained after perfusion of 260 pg/mL acebutolol HCI in
rat No. 5.

Time In. Remnantconcentrations | In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.4536 5.4374 0.0162
10 5.3926 5.3969 0.0043
15 5.3327 5.3564 0.0237
20 5.3119 5.3159 0.0044
25 5.2907 5.2755 0.0152
30 5.2356 5.2350 0.0006

Table 4.13: Calculated absorption kinetic parameters of acebutolol HCI in rat No. 5.

Kap %A o R
0.486 Rt 99.08 % 0.981
5.55 -
(2]
S 55
®
£ 5.45- ®
o
— -
§§ 54
= §5.35 -
= N
[
5.3 -
5 ®
£ 525-
5.2 T T T T T T T 1
0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.6: Plot of the fit of the apparent first order equation to the data (remaining luminal

concentration of acebutolol HCI versudime) in rat No. 5.
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Table 4.14: The absorption kinetic resul obtained after perfusion of 260 ug/mL acebutolol HCI in
rat No. 6.

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.4805 5.4770 0.0035
10 5.4212 5.4325 0.0113
15 5.3730 5.3880 0.0150
20 5.3631 5.3435 0.0196
25 5.3327 5.2990 0.0336
30 5.2242 5.2545 0.0304

Table 4.15: Calculated absorption kinetic parameters of acebutolol in rat No. 6.

Kap %A o R

0.534 Rt 99.50 0.962

5.55 +
5.5
5.45 -
5.4 +

(Hg/mL)

5.35 ~
5.3 4
5.25 -

In. remnant concentrations

5-2 T T T T T T T 1
0 5 10 15 20 25 30 35 40

Time (Min.)

Figure 4.7: Plot of the fit of the apparent first order equation to the data (remaining luminal

concentration of acebutolol HCI versus time) in rat No. 6.
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5.55 -
55 3
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In. remnant concentrations

5.15 -
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—®Ratl) c A3—-Rat2) c A>-—-Rat3) c A>
—mems Ratd) ¢ A>—-dRats) ¢c A>--Rat6) c A>

Figure 4.8: Graphical representation for the six rats after the administration of 260 pg/mL
acebutolol HCI.

The data obtained in the 6 rats are summarized in table 4.16. Mean (£SD) of In remnant
concentrations at each time interval for all 6 mats calculated. Also, Mean (xSD) of

Kap, %Ao, and R was demonstrated. Furthermore, the means of In remnant concentrations
plotted againstime to give graphical representation of all data obtained experimentally
from the 6 rats in one line which describg kehavior found in the rat small intestine
(Fig. 4.9).

The results summarized in table 4.16 have shown that ACH Jpasllke ranged from
0.396 to 0.534 h The mean of %Awas 99.06 + 0.2244%, R was 0.980 + 0.008%d
%RSD was less than 1% (table 4.16).
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Table 4.16: In remnant concentrations 6 acebublol HCI after perfusion of 260 ug/mL acebutolol
HCl in the 6 rats.

Time In. Remnant concentrations(pug/mL)
(minute)
Rat No. 1| Rat No. 2| Rat No. 3| Rat No. 4| Rat No. 5| Rat No.6 | Mean = SD %RSD
05 5.4398 5.4535 5.5025 5.4850 5.4536 5.4805 5.4692 + 0.40 %
0.0218
10 5.3828 5.4021 5.4536 5.4305 5.3926 5.4212 5.4138 + 0.44 %
0.0240
15 5.3171 5.3480 5.3974 5.3828 5.3327 5.3730 5.3585 + 0.53%
0.0283
20 5.3013 5.3224 5.3828 5.3631 5.3119 5.3631 5.3408 + 0.57 %
0.0303
25 5.2745 5.2907 5.3631 5.3378 5.2907 5.3327 5.3150 + 0.59 %
0.0315
30 5.2184 5.2413 5.3276 5.2961 5.2356 5.2242 5.2572 + 0.76 %
0.0404
Kap (h'l) 0.48 0.486 0.396 0.426 0.486 0.534 0.468 + 0.0449
%A o 98.3 99.07 98.76 98.94 99.08 99.5 99.0583+0.2244
R 0.982 0.993 0.977 0.986 0.981 0.962 0.980 * 0.0095
SD: Standard Bviation. %RSD: Relative Standard &viation. Kap: Absorption rate constant.
%A o: Estimated inclination of the rectal absoopgtiline. R: Correlationcoefficient.

Acebutolol HCI alone

w» 555
5
'g 55 o
S 545
(&)
S . 54
O
£ E535 *
=y *
E< 53
o
I= 5.25
& 52
(]
= 515
0 5 10 15 20 25 30 35 40

Time (Min.)

Figure 4.9: Graphical representation of the obtained experimentally data for the 6 rats after the

administration of 260 pg/mL acebutolol HCI.
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4.3 The effect of verapamil HCI (200 pg/mL) orthe absorption rate constant of
ACH (260 pg/mL)

After co-perfusion of 10 mL ACH (260 pg/mL) with verapamil HCI (200 pg/mL),
dissolved in normal saline, into ragmall intestine usingntestinal perfusion technique,
the intestinal luminal fluid samples were collected at different tmtexvals 6, 10,15,

20, 25, and 30 min). Each collected sample had been analyzed by UV at 33@dm,
then remnant concentrations AACH were determined. In remnant, predicted, and
residual concentrations were calculated for all 6 rats according to thertiestkinetic
model (InG = InGy T Kapt). The results of each rat are listed in tables 4.17, 4.19, 4.21,
4.23, 4.25, and 4.27. In addition, absorption rate constagt éstimatednclination of

the rectalabsorptionine (%Ao), and correlation coefficient (R) weoalculated foreach

rat. The results of each rat are shown in tables 4.18, 4.20, 4.22, 4.24, 4.26, and 4.28

Moreover, In remnant concentration obtained experimentally from each rat was plotted
against sampling time, and the best fit line was evaluatedetect the linearity of
absorption process. The absorption rate behavior for each rat is shown in figures 4.10,
4.11,4.12,4.13, 4.14, and 4.15.
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Table 4.17: The absorption kinetic result after ceperfusion of 260 pug/mL acebutolol HCI co
administered with 200 pg/mL verapamil HCI for the rat No. 1

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3877 5.3816 0.0061
10 5.3327 5.3474 0.0147
15 5.3067 5.3131 0.0064
20 5.2960 5.2789 0.0171
25 5.2580 5.2447 0.0133
30 5.1952 5.2105 0.0153

Table 4.18: Calculated absorption kinetic parameters of acebutolol HCI in the presence of 200 pg/mL
verapamil HCl in rat No. 1.

Kap %A, R

0.408 it 97.74 0.977

In. remnant concentrations

5- 15 T T T T T T T 1
0 5 10 15 20 25 30 35 40

Time (Min.)

Figure 4.10: Plot of the fit of the apparent first-order equation to the data (remaining luminal

concentration of acebutolol HCI with 200 pg/mL verapamil HCI versus time) in rat No. 1
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Table 4.19: Absorption kinetic results after ceperfusion of 260 pg/mL acebutolol HCI co
administered with 200 pg/mL verapamil HCI for the rat No. 2

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3730 5.3691 0.0039
10 5.3224 5.3382 0.0158
15 5.3067 5.3074 0.0007
20 5.2960 5.2764 0.0196
25 5.2525 5.2456 0.0069
30 5.2010 5.2148 0.0138

Table 4.20: Calculated absorption kinetic parameters of acebutolol HCI in the presence of 200 pg/mL
verapamil HCl in rat No. 2.

Kap %A, R
0.372 R 97.53 0.975

5.45 -
(2]
[y
S 5.4 -
©
§ _535-
c —E' [ ]
=
8 525 -
5
= 5.2 - )
<

5.15 T T T T T T T 1

0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.11: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HCI with 200 pg/mLverapamil HCI versus time) in rat No. 2.
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Table 4.21: Absorption kinetic results after co-perfusion of 260 pg/mL acebutolol HCI co
administered with 200 pg/mL verapamil HCI for the rat No. 3

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3680 5.3643 0.0037
10 5.3172 5.3321 0.0149
15 5.2961 5.2998 0.0037
20 5.2853 5.2676 0.0177
25 5.2525 5.2354 0.0171
30 5.1833 5.2031 0.0198

Table 4.22: Calculated absorption kinetic parameters of acebutolol HCI in the presence of 200 pg/mL
verapamil HCI in rat No. 3.

Kap %A, R

0.384 i 97.55 0.967

In. remnant concentrations

5- 15 T T T T T T T 1
0 5 10 15 20 25 30 35 40

Time (Min.)

Figure 4.12: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HCI with 200 pg/mL verapamil HCI versus time) in rat No. 3.
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Table 4.23: Absorption kinetic results after ceperfusion of 260 pg/mL acebutolol HCI co
administered with 200 pg/mL verapamil HCI for the rat No. 4

Time In. Remnant concentrations| In. Predicted concentrations| In. Residualconcentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3926 5.3884 0.0042
10 5.3378 5.3502 0.0124
15 5.3067 5.3121 0.0054
20 5.2907 5.2739 0.0168
25 5.2468 5.2357 0.0111
30 5.1833 5.1975 0.0142

Table 4.24: Calculated absorption kinetic parameters of acebutolol HCI in thpresence of 200 pg/mL
verapamil HCl in rat No. 4.

Kap %A, R

0.456 R 97.86 0.985

5.45 +

5.4

5.35 -

(ug/mL)
6]
w
o

5.25 -

5.2 1

In. remnant concentrations
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5.15

Figure 4.13: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HCI with 200 pg/mL verapamil HCI versugime) in rat No. 4.
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Table 4.25: Absorption kinetic results after ceperfusion of 260 pg/mL acebutolol HCI co-
administered with 200 pg/mL verapamil HCI for the rat No. 5

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.4022 5.3974 0.0048
10 5.3429 5.3588 0.0159
15 5.3172 5.3202 0.0030
20 5.3014 5.2816 0.0198
25 5.2525 5.2429 0.0096
30 5.1893 5.2043 0.0151

Table 4.26: Calculated absorption kinetic parameters of acebutoldfiCl in the presence of 200 pg/mL
verapamil HCI in rat No. 5.

Kap %A o R

0.462 it 98.11 0.981

5.45
5.4

5.35 - N

(ug/mL)
)]
w
o

5.25 -

5.2 1 ®

In. remnant concentrations
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Figure 4.14: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HCI with 200 pg/mL verapamilHCI versus time) in rat No. 5.
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Table 4.27: Absorption kinetic result after coperfusion of 260 pg/mL acebutolol HCI co
administered with 200 pg/mL verapamil HCI for the rat No. 6.

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.4069 5.3705 0.0364
10 5.3224 5.3495 0.0271
15 5.3119 5.3285 0.0166
20 5.2907 5.3075 0.0168
25 5.2961 5.2864 0.0097
30 5.2799 5.2655 0.0144

Table 4.28: Calculated absorption kinetic parameters of acebutolol HCI in the presence of 200 pg/mL
verapamil HCI in rat No. 6.

Kap %A, R

0.253 it 97.17 0.852

In. remnant concentrations

5- 15 T T T T T T T 1
0 5 10 15 20 25 30 35 40

Time (Min.)

Figure 4.15: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HCI with 200 pg/mL verapamil HCI versus time) in rat No. 6.
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Figure 4.16: Graphical represetation for the 6 rats after co-administration of 260 pug/mL acebutolol
HCI with verapamil HCI 200 pg/mL.

The data obtained in the 6 rats are summarized in fab®Mean (£SD) of In remnant
concentrations at each time interval of all 6 rats was calculated. Also, Mean (+SR) of k
%Ay, and R was demonstrated. Furthermore, the means of In remnant coraentrati
plotted against time to give graphical representation of all data obtained experimentally
from the 6 rats in one line that descrikg llehavior foundn the rat small intestine (Fig.
4.17).

The results summarized in table 4.29 have shown that AGétlministered with200
pg/mL verapamil HCI has k values ranged from 0.253 @462 . The mean of %4
was 97.66 + 0.3219 %, R was 0.956 + 0.054dd %RSD was less than 1%.

Upon comparing the mean values gflketween the first (ACH alone) and secomougps
(ACH with verapamil HCI 200 pg/mL), no statistical differences were observed (P value
= 0.146).These resultsuggest that no significant effect of verapamil HCI 200 pg/mL on
kap value of ACH.
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Table 4.29: In Remnant concentrations of acebutolol HCGhfter co-perfusion with verapamil HCI (200
pg/mL) in 6 rats.

Time In. Remnant concentrations(pg/mL)
(minute)

Rat No. 1| Rat No. 2] Rat No. 3| Rat No. 4] Rat No. 5| RatNo.6 | Mean * %RSD
05 5.3877 5.3730 5.3680 5.3926 5.4022 5.4069 5.388D84 2 0.29 %
10 5.3327 5.3224 5.3172 5.3378 5.3429 5.3224 5(.)1.3(;195251 0.20 %
15 5.3067 5.3067 5.2961 5.3067 5.3172 5.3119 5(.)1.3(())17%11 0.13%
20 5.2960 5.2960 5.2853 5.2907 5.3014 5.2907 ggggg | 0.11%
25 5.2580 5.2525 5.2525 5.2468 5.2525 5.2961 525(5)9075+_E-3 0.35%
30 5.1952 5.2010 5.1833 5.1833 5.1893 5.2799 5222)}3%} 0.71 %

Kap (h™ 0.408 0.372 0.384 0.456 0.462 0.253 0.3892 + 0.0761
%A o 97.74 97.53 97.55 97.86 98.11 97.17 97.66 + 0.3219
R 0.977 0.975 0.967 0.985 0.981 0.852 0.956 + 0.0514

SD: Standard Deviation.

%RSD: Relative Standard &viation.

%A . Estimated inclination of the rectal absorption line.

Kap: Absorption rate constant.

R: Correlation coefficient.

Acebutolol HCI with verapamil HCI 200 ug/mL
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Figure 4.17: Graphical representation of the obtained experimentally data for the 6 rats after the

administration of 260 pg/mL acebutololHCI co-administered with 200 pg/mL verapamil.
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4.4 The effect of verapamil HCI (400 ug/mL) on the absorption rate corest of
ACH (260 pg/mL)

After co-perfusion of 10 mL ACH (260 pg/mL) with verapamil HCI (400 pg/mL),
dissolved in normal saline, into ramall intestine usingntestinal perfusion technique,

the intestinal luminal fluid samples were collectdlifferenttime intervals §, 10, 15,

20, 25, and 30 min). Each collected sample had been analyzed by UV at 320 nm, then
remnant concentrations of ACH were determined. In remnant, predicted, and residual
concentrations were calculated for all 6 rats according téirdteorder kinetic model (In
Ci=1In G T kapt). The results of each rat were listed in tables 4.30, 4.32, 4.34, 4.36, 4.38,
and 4.40. In addition, absorption rate constagf),(lestimatednclination of the rectal
absorptionline (%Ao), and correlation coefficient (R) wemalculated foreach rat. The
results of each rat are shown in tables 4.31, 4.33, 4.35, 4.37, 4.39, and 4.41.

Otherwise, In remnant concentration obtained experimentally from each rat was plotted
against sampling timeand the best fit line was evaluated to detect the linearity of
absorption process. The absorption rate behavioredoh individualrat is shown in
figures 4.18, 4.19, 4.20, 4.21, 4.22, and 4.23.
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Table 4.30: Absorption kinetic results after ceperfusion of 260 pg/mL acebutolol HCI co
administered with 400 pg/mL verapamil HCI for the rat No. 1.

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3067 5.2901 0.0166
10 5.1530 5.1744 0.0214
15 5.1218 5.0587 0.0631
20 4.8706 4.9423 0.0717
25 4,7855 4.8273 0.0418
30 4,7675 4.7116 0.0559

Table 4.31: Calculated absorption kinetic parameters of acebutolol HCI in the presence of 400 pg/mL
verapamil HCI in rat No. 1.

Kap %A, R

1.386 it 98.24 0.9

In. remnant concentrations
(ng/mL)

0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.18: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HCI with 400 pg/mL verapamil HCI versus time) in rat No. 1.
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Table 4.32: Absorption kinetic result after caeperfusion of 260 pg/mL acebutolol HCI co
administered with 400 pg/mL verapamil HCI for the rat No. 2

Time In. Remnant concentrations| In. Predicted concentrations| In. Residualconcentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3276 5.3141 0.0135
10 5.1773 5.1985 0.0212
15 5.1530 5.0828 0.0702
20 4.8948 49671 0.0724
25 4.8031 4.8516 0.0483
30 4.7943 4.7359 0.0584

Table 4.33: Calculated absorption kinetic parameters of acebutolol HCI in thpresence of 400 pg/mL
verapamil HCl in rat No. 2.

Kap %A, R

1.386 it 98.29 0.966

In. remnant concentrations
(ng/mL)

0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.19: Plot of the fit of the apparent first-order equation to the data (remaining luminal

concentration of acebutolol HCI with 400 pg/mL verapamil HCI versugime) in rat No. 2.
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Table 4.34: Absorption kinetic results after ceperfusion of 260 pg/mL acebutolol HCI co
administered with 400 pg/mL verapamil HCI for the rat No. 3

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3680 5.3528 0.0152
10 5.2127 5.2380 0.0253
15 5.1892 5.1231 0.0661
20 49414 5.0083 0.0669
25 4.8541 4.8934 0.0393
30 4.8289 4.7786 0.0503

Table 4.35: Calculated absorption kinetic parameters of acebutol¢iCl in the presence of 400 pg/mL
verapamil HCl in rat No. 3.

Kap %A, R

1.380 98.24 0.972

In. remnant concentrations
(Hg/mL)

0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.20: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HCI with 400 pg/mL verapamil HClversus time) in rat No. 3.
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Table 4.36: Absorption kinetic results after ceperfusion of 260 pg/mL acebutolol HCI co
administered with 400 pg/mL verapamil HCI for the rat No. 4

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3974 5.3813 0.0161
10 5.2470 5.2643 0.0173
15 5.2070 5.1473 0.0597
20 4.9565 5.0302 0.0737
25 4.8706 49132 0.0426
30 4.8541 4.7962 0.0579

Table 4.37: Calculated absorption kinetic parameters ofcebutolol HCI in the presence of 400 pg/mL
verapamil HCl in rat No. 4.

Kap %A o R

1.404 98.29 0.971

In. remnant concentrations
(ng/mL)

0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.21: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutolol HCI with 400 pg/mLverapamil HCI versus time) in rat No. 4.
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Table 4.38: Absorption kinetic results after ceperfusion of 260 pg/mL acebutolol HCIl co
administered with 400 pg/mL verapamil HCI for the rat No. 5

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3581 5.3404 0.0177
10 5.2069 5.2292 0.0223
15 5.1833 5.1179 0.0654
20 4.9338 5.0066 0.0728
25 4.8458 4.8954 0.0496
30 4.8458 4.7841 0.0617

Table 4.39: Calculated absorption kinetiqgparameters of acebutolol HCI in the presence of 400 pg/mL
verapamil HCl in rat No. 5.

Kap %A, R

1.338 1t 98.17 0.964

In. remnant concentrations
(ng/mL)

0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.22: Plot of the fit of the apparent first-order equation to the data (remaining luminal

concentration of acebutolol HClwith 400 pg/mL verapamil HCI versus time) in rat No. 5.
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Table 4.40: Absorption kinetic results after ceperfusion of 260 pg/mL acebutolol HCI co
administered with 400 pg/mL verapamil HCI for the rat No. 6.

Time In. Remnant concentrations| In. Predicted concentrations| In. Residual concentrations
(minute (Hg/mL) (Hg/mL) (Hg/mL)
05 5.3378 5.3203 0.0175
10 5.1833 5.2096 0.0263
15 5.1652 5.0990 0.0662
20 49183 4.9884 0.0701
25 4.8374 4.8778 0.0404
30 4.8204 47672 0.0532

Table 4.41: Calculatedabsorption kinetic parameters of acebutolol HCI in the presence of 400 ug/mL
verapamil HCI in rat No. 6.

Kap %A R

1.326 it 08.16 0.967

In. remnant concentrations
(ug/mL)

0 5 10 15 20 25 30 35 40
Time (Min.)

Figure 4.23: Plot of the fit of the apparent firstorder equation to the data (remaining luminal

concentration of acebutoloHCI with 400 pg/mL verapamil HCI versus time) in rat No. 6.
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Figure 4.24: Graphical representation for the 6 rats after ceadministration of acebutolol HCI 260

pg/mL and verapamil HCI 400 pg/mL.

The dataobtained previouslyn the 6 rats are summarized in table 4.42. Mean values
(zSD) of In remnant concentrations at each time interval of all 6 rats was calculated.
Also, Mean values (+SD) of)fs %A, and R were demonstrated. Furthermore, the means
of In remnant concentratisnplotted against time to give graphical representation of all
data obtained experimentally from the 6 rats in one line that desgpibetavior found

in the rat small intesting@=ig. 4.25).

The obtained data revealed that ACHambministered witi00 pgmL verapamil has 4
values ranged from 1.326 10404 K. The mean of %4Awas98.2317 + 0.0564%, R was
0.968 £ 0.0031land %RSD was less than 1% (table 4.42).

Upon comparing the mean value gf bf this group with the first group (ACH alone),
statistcal differences was observed (p value < 0.001). The results show significant
increase in theJvalue of ACH in the presence of verapamil HCI 400 pg/mL from 0.468
to 1.37.
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Table 4.42: In Remnant concentrations of acebutoldliCl after co-perfusion with verapamil HCI (400
pg/mL) in the 6 rats.

Time In. Remnant concentrations(pug/mL)
(minute)
Rat No. Rat No. Rat No. Rat No. Rat No. Rat Mean = SD %RSD
1 2 3 4 5 No. 6
05 5.3067 5.3276 5.3680 5.3974 5.3581 | 5.3378 | 5.3493 + 0.0321] 0.60 %
10 5.1530 5.1773 5.2127 5.2470 5.2069 | 5.1833 | 5.1967 +0.0327] 0.63%
15 5.1218 5.1530 5.1892 5.2070 5.1833 | 5.1652 | 5.1699 + 0.0302 0.58 %
20 4.8706 4.8948 49414 4.9565 49338 | 4.9183 | 4.9192 +0.0318] 0.65 %
25 4.7855 4.8031 4.8541 4.8706 48458 | 4.8374 | 4.8328 +0.0322] 0.67 %
30 47675 4.7943 4.8289 4.8541 4.8458 | 4.8204 | 4.8185 + 0.0326] 0.68 %
Kap (h'l) 1.386 1.386 1.38 1.404 1.338 1.326 1.37 + 0.0308
%A o 98.24 98.29 98.24 98.29 98.17 98.16 98.2317 + 0.0564
R 0.97 0.966 0.972 0.971 0.964 0.967 0.968 + 0.0031

SD: Standard Deviation.

%RSD: Relative Standard &viation.

%A . Estimated inclination of the rectal absorption line.

Kap: Absorption rate constant.

R: Correlation coefficient.

Mean In. remnant concentrations
(Mg/mL)

Acebutolol HCI with verapamil HCI 400 pg/mL

5 10

15

20

Time (Min.)

25 30

35

40

Figure 4.25: Graphical representation of the obtained experimentally data for the 6 rats after the

administration of 260 pg/mL acebutolol HCI ceadministered with 400 pg/mL verapamil.
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The means of In remnant concentrations of all data obtained experimentally from the
three grops were assembled in table 4.43 and figure 4.26 to show the difference of ACH

absorption behavior among three groups.

Table 4.43 The mean of In remnant concentrations of Acebutolol HCI| for all data obtained

experimentally for the three groups.

Time ACH (260 pg/mL) ACH/Verapamil HCI ACH/Verapamil HCI
aloné (260/200 pg/mL§ (260/400 pg/mL¥
0 5.4864 5.5407 5.5452
5 5.3884 5.4692 5.3493
10 5.3290 5.4138 5.1967
15 5.3076 5.3585 5.1699
20 5.2934 5.3400 4,9122
25 5.2596 5.3150 4.8328
30 5.2053 5.2572 4.8185
ACH: acebutolol HCI a: mean of In remnant concentrations

Summary of all data obtained experimentally

(ng/mL)

0 5 10 15 20 25 30 35 40
Time (Min.)

Mean In. remnant concentrations

@ time vs acebutolol HCI alone
time vs acebutolol HCI with 200 pg/mLverapamil HCI
A time vs acebutolol HCI with400 pg/mL verapamil HCI

Figure 4.26: Graphical representation of the fit of the apparent Firstorder equation to the obtained
meandata (remaining luminal concentrations of 260 pg/mL acebutolol HCI, aebutolol HCI with 200
pa/mL of verapamil HCI, and acebutolol HCI with 400 pg/mL of verapamil HCI).
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4.5 Statistical evaluation of data obtained experimentally

4.5.1 Test of homogeneitpf variances (Duncan) for grous

Table 4.44: Results of Duncan test for the homogeneity withinthe first group of rats who was
perfused ACH (260 ug/mL) alone

Sum of squares| Df | Mean square| F-value | P-value
Inter groups 0.029 5 0.06 1.012 | 0.428
Intra groups 0.170 30 0.006
Total 0.199 35

Table 4.45: Results of Duncan test for the homogeneity within the second groumf rats who was
perfused ACH 260 pginL with verapamil HCI 200 pg/mL.

Sum of squares| Df | Mean square| F-value | P-value
Inter groups 0.004 5 0.001 0.198 | 0.961
Intra groups 0.122 30 0.004
Total 0.127 35

Table 4.46: Results of Duncan test for the homogeneity within the third group of rats who was
perfused ACH 260 pgiL with verapamil HCI 400 pg/mL.

Sumof squares| Df | Mean square | F-value | P-value
Inter groups 0.030 5 0.006 0.122 | 0.986
Intra groups 1.461 30 0.049
Total 1.490 35

4.5.2 Comparison between J, of three groups

4.5.2.1 One way ANOVA test

The results in the table 4.4howedhat there is statistical significant difference between
the kyp values of ACH administered alone and ACH administered wipertused

verapamil HCI (pvalue< 0.05).
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Table 4.47: A multiple comparison One way ANOVA test between the three groups

Sum of squares df | Mean square| F-value | P-value

Inter groups 1.956 2 0.987 56.549 | < 0.001
Intra groups 1.816 105 0.017
Total 3.772 107

4.5.2.2 Bonferroni test to ompare between the three groups

Bonferroni test has been done to detect the differebetseen the mean of the three
groups.The results in the table 4.48 showed that there is statistical significant difference
between the k values of ACH administered alone and AGidadministered with
verapamil HCI 400 pghL (p-value < 0.001andnon-significant differences kyp values

when ACHcoadministeredvith verapamil HCI 200 pg/mL.

Table 4.48: A multiple comparisons Bonferroni test between the three groups.

Mean
(1) Group (J) Group Difference Standard Significant
Error
(1-9)
ACH + Ve@’l\jlm” HCI2001 5 06179 0.3100 0.146
ACH 260 pg/mL alone _
ACH + verapamil HCI 400 03133 0.3100 <0001
pg/mL
ACH 260 pg/mL alone -0.06179 0.3100 0.146
ACH + verapamil HCI 200
pg/Ml ACH + verapamil HCI 400 0.24954 0.3100 <0.001*
pg/mL
ACH 260 pg/mL alone -0.31133 0.3100 < 0.001*
ACH + verapamil HCI 400
pg/Ml ACH + ve&g/prirl HCI 200 -0.24954 0.3100 < 0.001*

* Statistically significant a0.05level of significance.
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Chapter 5

Discussion

5.1 Background

ACHi s a bl selective blocking agent which
oral bioavailability of ACH has been reported to be relatively lowi 380 %. Some
studies refer this low bioavailability to hepatic fipgiss metabolism (Roux et al983a).

Other studies suggest that ACH is a substrate for theeattddiated efflux transporter P

gp which may also contribute to its low bioavailability (Terao et al., 1996).

Based on these observations, the present work was designed to study theoabsorpt
process of ACH as the first step that can affect its bioavailability and to explore the
impact of RPgp on the oral absorption of ACH using verapamil HCI as an example of P
gp inhibitor in rat model. The study was also conducted to compare the eft@teieEnt

concentrations of verapamil HCI on the absorption rate constgho{lACH.

To achieve this purpose, 18 healthy wister albino male rats were used. The rats were
divided into three groups, six rats for each. The first group is the control groigh
received ACH alone 260 pg/mL, the second and third groups received ACH with
verapamil HCI 200 and 400 pg/mL, respectively.

In situ intestinal perfusion technique, which is accepted model for estimating intestinal
absorption and has proved to be usa@f providing guidance for human bioavailability
clinical trials (Garrigues et al., 1991), was applied to study ACH intestinal absorption.
ACH can be transported by carriers which are active in the intestinal perfusion technique.
Furthermore, in this mad all physiological conditions are preserved which provides
important insights about the dynamics of the absorption process (S&mcbeet al.,

1989; RuizBalaguer et al., 1997).

The absorption process is determined by many factors (Jamei et al. N2&@9ez and

Amidon, 2002), thereby to study the effect of any factor it is important to isolate the
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intestinal absorption process by eliminating the influence of other factors as much as

possible.

In the intestinal perfusion technique, administratiordafg in a solution rules out the
dissolution process. Intraluminal perfusion rules out the effect of gastric acidity and
gastric emptying. Therefore, the effect efp on drug absorption is more obvious due

exclusion of many factors that may influence @bsorption.

Furthermore, estimation otkbased on firsbrder disappearance of drug from intestinal
lumen is another advantage of the method used in this study. Direct measuremgnt of k
from intestinal sampling which based on disappeance of drug fi@stinal lumen is
better than indirect measurement of, Krom blood sampling which depend on
appearance of drug in the plasma because hepatipdisst effect should be taken into
consideration with blood sampling. In intestinal sampling we deterrhimeamount of

drug absorbed from intestine regardleshig entire amount reachegstemic circulation

or exposed in some degree to hepatic metabolism. For this evaluation sampling from

portal vein is required.

Despite the fact that anesthesia used is tbthnique may decrease blood flow and
intestinal motility which may decrease both passive and active transport and affecting the
estimation of drug absorption, it has been reported that barbiturates have the least effect
on intestinal permeability in rat(Yuasa et al., 1993). Therefore, in this study thiopental

50 pug/Kg was used as anesthetic drug in all experiments which belongs to barbiturates.

In our study rats were fasted for at leastht? before the experiment because previous
studies showed th&td rats had lower absolute bioavailability than fasted rats (Piguitte
Miller and Jamali, 1997). Female rat was rejected to avoid risk of pregnancy er inter
individual variabilities. During experimental procedure any rat got dead, suffer from

bradycardapr apnea, exposed to incision in the intestine was also rejected.

Regarding the collected luminal fluid samples, the colorless and transparent samples were
accepted for spectrophotometric analysis but samples mixed with blood were rejected.
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In situintestinal perfusion model assumed that drug concentrations in the enterocyte and
the intestinal lumen were in dynamic equilibrium after 5 min. Therefore, only samples
obtained between 5 30 min, at which ACH concentration in the enterocyte were
assumeda be proportional to the ACH concentrations in the intestinal lumen, were used
for calculation of k,(Ruiz-Balaguer et al., 1997). This is due to the effect of membrane
uptake, enterocyte loading and other factors which resulting in lower predictedl initia
concentration (the intercept of the regression line at time zero) than actual initial
concentration (concentration of nperfused sample at time zero) (Mastfillodre et al.,

1986; SanchePico et al., 1989).

For quantitative determination, UV specthgpometric analysis was performed to
determine the remnant concentrations of ACH in the intestinal luminal fluid which

indicate the disappearance of drug from the intestinal lumen.

Absorption rate constants sk were statistically compared between thee¢higroups

using a onavay andysis of variance (ANOVA) test.

5.2 Development and validation of UWis spectrophotometric method of analysis

UV-spectrophotometric method has been developed for the quantitative analysis of ACH
in intestinal luminal fluidcollected during intestinal perfusion technique. The proposed
method was found to be quite simple, accurate, rapid, and inexpensive for the
determination of ACH in the intestinal luminal fluid.

During method development, no spectral interference were ifiddntduring
determination of ACH in the presence of verapamil HCI and intestinal luminal fluid at the

selected wavelength 320m0m, therefore it

The developed method was validated for linearity, LOD, LOQ, precision, and accuracy
accordirg to ICH guidelines CH: 2005).

Results obtained during method validation showed a linear relationship between the
absorbance and the concentrations of ACH in the rangé @00 ug/mL. The results are
shown in table 4.1. The coefficient of determinati®f) for the obtained calibration

82



curve was 0.999 indicating a very good linearity. The representative linearsregres
eqguation was found to b¥:= 0.007 X + 0.003.

The results of accuracy, intday and intreday precision were reported in table 4rtla
4.3 respectively. The precision and accuracy of the proposed method were tested by

means of replicate measurements of the teste

Regarding the accuracy, the results of the recovery studies was in the range between
99.8% - 102.5% which reveal good accuracy of the developed method. On the other
hand, both inteday and intraday precision results show low RSD not more that 2%

which indicate good precision.

With respect to ACH stability in intestinal fluid, the ACH solutiorosfed stability at
room temperature over a period of 6 hrs. Moreover, during our experiment all collected
samples measured by the developed spectrophotometric method have concentrations

within the linearity range and above the LQ@Q3ug/mL.

The validation parameters confirm that the method is appropriate and suitable for

guantitative determination of ACH in intestinal luminal fluid.

5.3 Intestinal absorption of ACH

The determination ofk using the control group was a necessary step to gain insight into
ACH absorption process becausg kalue for the same drug is not constant as other
pharmacokinetic parameters but many factors could affect it. Therefore, this group gives
kap value under the same conditions of all rats used in this study and withmbedsae

of ACH which can be compared with those values obtained in the presenegpof P
inhibitor.

The allometric dose of ACH was calculated according to the following equation: human

dose/human weight = animal dose/animal weight (Nair and Jacob, 2016).

The results in table 4.16 show the absorption rate constaptelkained for all 6 rats in
the control group. The mean ofpk/alues obtained was 0.468 * 0.044% fhe gradual

decrease of ACH concentration in the intestinal lumen indicates that A@$olirst
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order kinetic and the dose used does not cause saturation of the transporter (table 4.16,
figure 4.9).

The homogeneity between rats within the group was statistically evaluated as shown in
table 4.44. Results demonstrated low itelividual variation among rats (p value =
0.428).

5.4 The effect of verapamil HCI on the intestinal absorption oACH

The results obtained in our study demonstrated that ACH could be a substrate for rat
intestinal Pgp, because absorption rate constant valugy ¢k ACH at concentration

260 pg/mL were increased by-perfusion of verapamil HCI as-@p inhibitor

Verapamil HCI, which has been widely used in intestinal transport assays, was selected
as an efflux inhibitor due to its clear effect on the absorptiomaniy drugs which are
secreted from the enterocyte by thg@ The effect of verapamil HCI at concentration
400 pg/mL on the absorption ofdp substrates was approved by previous studies in rats
model and significant effect on the absorption rate cors{ég) was observedSong et

al., 2006 Abushammala et al., 2013; Choi and Song, 2016). Therefore, verapamil HCI at
concentration 400 pg/mL was adopted to investigate the rolegpfdh ACH absorption

in our model. On the other hand, halftbé previousoncentration (20Qig/mL) was also

used to explore the effect of lower concentration of verapamil HCI on the absorption of
ACH.

The data obtained in our study revealed a significant reduction in the remnant
concentrations of ACH in intestinal luminal ftls of rats in the third group (ACH 260
pg/mL with verapamil HCI 400 pg/mL) andakvalue increased-®ld from 0.468 +
0.0449 R to 1.37 + 0.0308 h (tables 4.16 and 4.42). Statistical analysis using
Bonferroni test showed p value < 0.001 (table 4.48).

On the contrary, no significant effect of verapamil HCI, at concentration 200 pug/mL, on
the kg, value of ACH was found. As shown in table 4.29, remnant concentrations of
ACH in ther a intesdinal luminal fluid were not significantly decreased. The gibsor

rate constant of ACH obtained was 0.3892 + 0.076inthe presence of verapamil HCI
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(200 pg/mL) which is not significantly different fromykvalue obtained for the control
group 0.468 + 0.0449%p = 0.146, table 4.48).

Inter-individual variaton among rats within the same group was statistically insignificant
(p value > 0.05) (table 4.45, 4.46).

Similar effect of verapami|l HCI , at -t he
blockers such as salbutamol (Valenzuela et al., 2004), lab¢fddashammala et al.,
2006), propranolol (Abushammala et al., 2013). Furthermore, this effect was also seen
wi t h dr ug s-blookere such ag rhefanminband phenformin (Song et al., 2006;
Choi and Song, 2016).

The oral drug bioavailability is diregtlrelated to the drug absorption and metabolism in
the gut wall. In case of ACH intestinal metabolism was not observed (Piiiddeand
Jamali, 1997).

The present study confirmed clearly the role @fdPon intestinal absorption of ACH and
thus may cotribute to its low bioavailability. This also could explain the active secretion

of ACH into the intestine after intravenous administration (Terao et al., 1996)

On the other hand, the obtained results reveal that verapamil HCI at concentration 400
pg/mL is almost sufficient to saturatedp efflux transporter which was reflected on

enhancement of ACH absorption.

Other studies showed that increase the concentratieerapamil HCI up to fivdold did
not significantly affect the absorption rate constan®-gp substrate due to saturation of
P-gp transporter (Abushammala et al., 2013).

Furthermore, lower verapamil HCI concentration (200 pg/mL) did not significantly affect
the absorption rate constant of ACH which indicates that verapamil HCI 200 pg/mL was

not enough to saturatedp efflux transporter or to affect on the absorption of ACH.
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Chapter 6

Conclusions

This study was carried out on eighteen albino wister male rats to evaluate the effect of P
gp inhibition on the absorption ACH using in situ intestinal perfusion technique.

Furthermore, the study was also conducted to compare the effect of different verapamil
HCI concentrations on ACH absorption. At the end of the study and after results analysis

we concluded the following:

1 ACH is actively secreted from the enterocyte bg@Pefflux pump as confirmed by
inhibition study performed with verapamil HCI which indicate thajpPis a critical

factor participates in low oral bioavailability of ACH.

1 The absorption rate constantdkof ACH was increased 3 folds in the presence of
verapamil HCI 400 pg/mL.

1 No effect of lower verapamil HCI| concentration (200 pg/mL) on th@kACH.

1 Verapamil HCI at concentration 400 pug/mL is almost sufficient to saturagp P

efflux transporter andffect its substrates.

1 The rats appear to be a suitable animal model for absorption studies with minimal

inter-individual variation was recorded among rats.
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Chapter 7

Recommendations

ACH is a substrate for -Bp. This feature should be considered wh&GH
administered concomitantly with any drug that can alter the activity -gp P

(induction or inhibition) to avoid significant dregyug interaction.

Since the applied in situ perfusion technique cannot completely investigate intestinal
absorption bease drug disappearance from intestinal lumen does not reflect drug

appearance in the blood, further studies using modified intestinal perfusion

techniques with mesenteric and portal vein cannulation is recommended to estimate
the intestinal and hepatic nadblism of the drug for accurately reflect intestinal

absorption from intestinal lumen.

Confirming the results of this study in further clinical studies to evaluate the effect of

verapamil HCl on ACH absorption.

Open new ways to overcome the efflefkect of Rgp on ACH other than using-dp

inhibitor which may haveherapeutic effect. Nanotechnoloigysuggested.
Development of regulations for use of animals in pharmacokinetic studies by

corresponding authorities in Palestine e.g. Ministry of Hedlledical Faculties,
pharmacy Faculties and Pharmaceutical Industry.
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