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Abstract

The first order reliability method (FORM) has been widely used in probabilistic modelling of groundwater problems. The FORM
approach requires an iterative optimization procedure to find out the system failure point (the most probable point).

The advantages of this approach are that it does not require many computations in comparison with other methods when applied to
simple problems, and it produces reasonably accurate results. However, it has been found that the computations of FORM can equal or
exceed that of other methods in case of large number of variables.

In this paper, a new implementation of FORM was proposed with more efficiency and accuracy than the traditional FORM method.
In the proposed approach, automatic differentiation is used to obtain the gradient vector of the limit state function, which is required by
FORM, instead of using finite difference estimation. This way, the first order derivative was obtained with a very good accuracy, and
with less computational effort. Based on the obtained results, it is found that the proposed implementation of FORM is a very good
tool for probabilistic risk assessment and uncertainty analysis in groundwater problems.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Contaminant transport modelling is an important tool
for any management or remediation scheme of groundwa-
ter aquifers. Because of increase in groundwater pollution
load resulted from industrial, and agricultural stresses on
water resources, such a remediation action is essential.
Numerical modelling of groundwater contamination is a
powerful tool and can be relied on; however, groundwater
modelling is not an easy task. To build a predictive model,
and to get reliable results, input data should be accurate
and representative of the real situation in the field. Because
of heterogeneity of the aquifers and uncertainties in model
input data, including chemical, physical and hydrogeolog-
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ical parameters, modelling process turns into a complicated
task. In addition, mathematical modelling implies many
assumptions and estimations, which increase the uncer-
tainty of the model output. To eliminate this problem,
many data are needed with as much accuracy as possible.
Since there are different sources of uncertainty related with
groundwater modelling, it is so difficult, if not impossible,
to collect all the required data with a high degree of accu-
racy. As a result, the output of numerical modelling of
groundwater pollution has always a certain degree of
uncertainty.

Several methods of uncertainty analysis in groundwater
modelling can be found in the literature. Among these
methods, the most familiar one is the Monte Carlo simula-
tion (MCS) [34]. Monte Carlo simulation has been used as
a probabilistic uncertainty propagation technique in differ-
ent environmental problems, and uncertainty analysis (e.g.
[20,28]). The advantages of MCS are that it is easy to
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implement, and requires few data. However, MCS requires
a huge number of computations to get reliable results. For
events with low probability of occurrence, or for contami-
nant transport problems with a huge number of variables,
MCS becomes inefficient. The number of samples required
to estimate event probability p is in the order of 100/p to
get a coefficient of variation of the estimate of 0.10 [6].
For instance, to estimate an event with a probability of
0.001 using MCS, some 100,000 runs are needed. The prob-
lem is rather difficult in the case of complex groundwater
problems with too many variables. Therefore, it is not effi-
cient to use MCS in real groundwater problems since they
have always a large number of variables.

The method of first order second moment (FOSM) is
another method used in uncertainty analysis. This method
has been used in different groundwater modelling and
uncertainty problems (e.g. [8,21]). Although FOSM does
not require too many number of runs, but its accuracy is
poor especially with low probability events.

The first order reliability method (FORM) was recently
used in groundwater modelling to account for uncertainty
in input parameters. However, application of FORM in its
current form implies optimisation procedure that requires
gradient evaluation, and thus, the uncertainties of the
obtained results may increase. Some studies have used
FORM in reliability and risk analysis of groundwater
problems [12–14]. All these studies, however, have applied
FORM with theoretical examples and the obtained results
were not validated or compared with other methods.

In this study, a new implementation of FORM was pro-
posed to increase its accuracy. Results of the proposed
method were checked against results from other methods.
Fig. 1. Limit state function and reliability index.
2. Theory of reliability analysis

Deterministic models are usually used to solve ground-
water and contaminant transport problems. These models
assume that all the input parameters are known in time
and space, and consequently, a deterministic value for each
parameter can be assigned. However, this assumption is
not true because of heterogeneity of hydrogeological
parameters. Therefore, deterministic modelling might
result in poor output, and thus, the objectives of numerical
modelling cannot be achieved. The reliability of the system
(Ps) is defined as the probability of non-failure in which the
resistance of the system (R) exceeds the load (L). System
resistance and load have different meanings according to
the problem of concern. In hydrogeology, system failure
occurs when the stresses on the aquifer, which can be pol-
lution load or groundwater discharge, exceed the system
resistance. Resistance of the system in this context means
the aquifer can be exposed to the stresses without damage
or deterioration. If R and L were expressed in stochastic
format, the probability of non-failure Ps can be obtained
as follows:

P s ¼ P ðLs � RsÞ ð1Þ
where P is the probability, Ls, and Rs are the load and resis-
tance of the system in stochastic form, respectively. Simi-
larly, the probability of failure Pf is the compliment of
the reliability, which can be expressed as

P f ¼ P ðLs > RsÞ ¼ 1� P s ð2Þ
Input variables for any hydrogeological system are com-
posed of different parameters. These parameters are classi-
fied into two categories: certain and uncertain parameters.
For example, groundwater discharge from a certain well
can be precisely known and considered as a certain param-
eter. In contrary to well discharge, the hydraulic conductiv-
ity of the aquifer cannot be known because of
heterogeneity of the aquifer, and therefore, can be consid-
ered as uncertain parameter or random variable. The ran-
dom variables of the system can be presented in the form
of random vector X = (x1,x2, . . . ,xn). The limit state func-
tion (sometimes called the performance function) is a scalar
function of the input variables, and it defines the failure do-
main as shown in Fig. 1. In a case of a groundwater flow
problem, the limit state function G(X) represents the model
output (the value of groundwater head at a certain time
and a certain location). The limit state function is formu-
lated such that {x : G(X) = 0}, represents the limit state
surface. The G-function is expressed with the convention
that if G(x1,x2, . . . ,xn) > 0, the component survives,
whereas if G(x1,x2, . . . ,xn) 6 0, the component fails. Thus,
the space of the physical random variables is divided into
two domains: safe, and failure domain. The probability
of failure is given by

pf ¼ p½GðX Þ 6 0� ¼
Z

GðX Þ60

fxðX Þdx ð3Þ

where fx(X) is the joint probability density function of the
random variables X = (x1,x2, . . . ,xn). Because of the diffi-
culties involved in solving the probability function, proba-
bilistic methods were developed to solve (3).
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Almost all methods of reliability analysis have been
derived from that one, which is called first order second
moment (FOSM). FOSM method uses the first terms of a
Taylor series expansion of the performance function to
approximate the mean value and the variance of the func-
tion [27]. The method is called second moment because it is
the highest order term used in FOSM [4]. In all reliability
methods, the intended goal is to find out the reliability
index (b), as shown in Fig. 1. This index can be used as a
measure of comparative reliability, and it is computed as
follows:

b ¼ lG

rG

� �
ð4Þ

where lG is the mean of the limit state function and rG is
the standard deviation of the limit state function.

The reliability (or the probability of non-failure) can be
computed as follows:

P s ¼ UðbÞ ð5Þ

where U is the standard normal cumulative distribution
function.

3. First order reliability method (FORM)

The idea of the first order reliability method (FORM)
was introduced in the early 70s in structural engineering
by Hasofer and Lind [15] as alternative to MCS method.
The FORM method of Hasofer and Lind was developed
later by Rackwitz and Fiessler [30]. It was used to assess
the risk of low probability events in structural engineering
[9]. The method was recently used in hydrological engineer-
ing and risk assessment of groundwater pollution [14,31].

The method of Hasofer–Lind and Rackwitz–Fiessler is
referred to as HL–RF approach, and it depends on the lin-
ear approximation of the performance function at a point
on the limit state, which is called the design point or the

most probable point MPP. HL–RF approach assumes the
existence of the critical level of the system performance,
which divides the parameters of the system domain into
Fig. 2. HL–RF
two parts: the acceptable or safe domain and the unaccept-
able or failure domain (Fig. 1).

The optimisation approach of HL–RF depends on the
linearization of the limit state function at the closest point
to the origin in the standard normal space as illustrated in
Fig. 2. Therefore, the first step in FORM is to transform
input variables from the physical space (X) to the standard
normal space (U) depending on the probability distribution
of each random variable. Transformation approach from
physical space X to standard normal space U was devel-
oped by Liu and Der Kiureghian [22]. Based on their trans-
formation approach, the non-normal random variables
X = (x1,x2, . . . ,xn) can be transformed to the correspond-
ing normal standard variables U = (u1,u2, . . . ,un) as
follows:

Zi ¼ U�1½F iðxiÞ� ð6Þ
where Zi is the equivalent standard normal random vari-
able; Fi(xi) is the cumulative distribution function (CDF)
of a random variable xi and U�1(Æ) is the inverse of the stan-
dard normal distribution function.

At the failure point (or MPP), two constraints should be
satisfied:

1. Minimisation of the distance from the origin to the tan-
gent of the limit state surface: minjUj.

2. The MPP should be located at the limit state surface;
that is: G(U) = 0.

The optimisation procedure is used to find the shortest
distance from the origin to the limit state surface (Fig. 2).
This distance represents the reliability index b. As b
decreases, the probability of non-failure U(p) decreases
and the complement probability (1 � U(p)) increases.
Therefore, the closest point on the limit state surface to
the origin is that one with the highest probability of failure.
The HL–RF approach can now be summarised as follows:

(1) Starting with an initial arbitrary value of random
variables vector X = (x1,x2, . . . ,xn) to start FORM itera-
tions. (Usually the initial value is the vector of the mean
values of random variables.)
approach.
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(2) Transformation of statistical descriptors (mean and
standard deviation) of all input random variables
X = (x1,x2, . . . ,xn) to their equivalent standard normal
descriptors as follows:

lN
xi
¼ xi � rxiU

�1½F ðxiÞ� ð7Þ

rN
xi
¼ /ðU�1½F ðxiÞ�Þ

f ðxiÞ
ð8Þ

where lN
xi

and rN
xi

are the mean and standard deviation of a
random parameter xi in the standard normal space respec-
tively. f(xi) is the probability density function of the param-
eter xi, and rxi is the standard deviation of the parameter in
the physical space.

(3) Evaluation of the partial derivative of the system
output with respect to input random variables at the cur-
rent iteration as follows:

r½GðX Þ� ¼ o½GðX Þ�
ox1

;
o½GðX Þ�

ox2

; . . . ;
o½GðX Þ�

oxn

� �
ð9Þ

where n is the number of random variables.
(4) Evaluation of the performance function and the

associated gradient at the current point.
(5) Moving to the new point according to the following

equation:

X nþ1 ¼ lN
n þ CðX ÞNn r½GðX Þ�n

� ½X n � lN
n �

t � r½GðX Þ�n � GðX Þn
r½GðX Þ�tn � CðX ÞNn � r½GðX Þ�n

ð10Þ

where Xn+1 is the vector of random variable at iteration
n + 1 in the normal space; Xn is the vector of random var-
iable at iteration n in the normal space; lN

X i
is the vector of

mean values of the random variables in the normal space at
iteration n; C(X) is the correlation matrix of random vari-
ables in the normal space; $[G(X)]n is the gradient vector of
the limit state function at iteration n with respect to each
random variable; r½GðX Þ�tn is the transpose of $[G(X)]n.

(6) Check the required accuracy as follows:

kX nþ1 � X nk < e ð11Þ

where e is the tolerance value (maximum permissible error);
Xn is the vector of random variables at iteration n; Xn+1 is
the vector of random variables at iteration n + 1.

If the condition in (11) is satisfied, proceed to the next
step, otherwise repeat steps from 2 to 6.

(7) The solution should be revised based on the new
value of X.

(8) Calculation of the safety index b can be done as
follows:

b ¼ � r½GðX Þ�jr½GðX Þ�j

� �t

X � ð12Þ

where X* is the vector of random variables at the design
point (most probable point), and t indicates the transpose
of the matrix.
One advantage of FORM is that the sensitivity informa-
tion of the random variables can be obtained without any
extra computations. Unlike the mean value method,
FORM expands the solution around the most probable
point, which is not necessarily the mean value point [24].
However, it was found that FORM procedure in its current
form requires many computations especially with compli-
cated contaminant transport problems that contain thou-
sands of nodes. Although the FORM approach is
efficient and advantageous when used with simple prob-
lems, compared with MCS, it is found that FORM requires
more computational effort than MCS [32,33]. As a result,
FORM method with its current implementation is not effi-
cient to be used in complicated groundwater and contami-
nant transport problems.

4. Alternative implementation of FORM

The HL–RF optimisation procedure requires calculat-
ing of the gradient vector at each iteration. There are differ-
ent methods to obtain gradient of the functions. These
methods can be summarised as follows:

• Manual: This can be done by hand using fundamental
calculus rules. Manual differentiation, however, requires
a huge effort and the output accuracy is questionable.

• Finite difference: The method of finite difference is very
common and has been widely used. It depends on esti-
mation of the first derivative by finite difference. The
accuracy of the method is highly dependent on the com-
plexity of the function of concern and the increment of
the difference.

• Automatic differentiation: Automatic differentiation
relies on the fact that any mathematical function,
regardless to its complexity, is executed on the computer
as a series of elementary operation. By applying chain
rule on the function repeatedly to the composition of
those elementary operations, the derivative of the func-
tion can be then computed in a mathematical way.

Automatic differentiation is a good alternative for eval-
uating the gradient vector instead of using the crude finite
difference method or manual method. The advantages of
automatic differentiation are that it is easy to implement
and does not require any knowledge of the original code
contents. The accuracy of automatic differentiation is up
to machine precision since it does not imply any cancella-
tion, truncation or estimation. In terms of time require-
ments, it is also superior when compared to other
differentiation methods.

4.1. Automatic differentiation of FORTRAN (ADIFOR)

Derivatives of functions are used very often for different
purposes such as sensitivity analysis, optimisation prob-
lems, inverse modelling, etc. If the function is simple, the
derivative of the function can be obtained analytically
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using calculus rules. However, in case of large applications
and complex functions like large computer codes, it is very
complicated to obtain the derivative analytically. There-
fore, other methods have been used to obtain the derivative
of the complex functions. The most familiar method used
for derivative estimation is the finite difference method.
This method suffers from poor accuracy and its result is
highly dependent on the increment value of the finite differ-
ence. In addition, the method is slow and requires solving
the function many times to obtain the derivative.

ADIFOR [5] is a FORTRAN pre-processor to generate
a code that computes the partial derivatives of all depen-
dent variables with respect to all independent variables.
The processor of ADIFOR needs two input files: the first
one lists all the dependents and independents variables,
and the second file identifies all the subroutines of the pro-
gram for which the derivative code should be obtained.
Using automatic differentiation, all the errors associated
with finite difference method (such as round of error, incre-
ment size, etc.) can be eliminated. Any computer code,
regardless to its length, is composed of set of mathematical
operations such as summation, multiplication, etc. ADI-
FOR applies chain rule of calculus on all mathematical
operation in the code to obtain the derivative of a depen-
dent variable with respect to independent one. The theory
of ADIFOR can be illustrated as follows: assuming that
the independent variables for a certain function are:

X i ¼ fiðx1; x2; . . . ; xi�1Þ; i ¼ nþ 1; nþ 2; . . . ;m ð13Þ

and the dependent variables are:

xnþ1; xnþ2; . . . ; xm ð14Þ

There are two basic approaches to get the derivative code
using automatic differentiation: the forward mode and
backward mode.

In the forward mode, the computer holds a value and a
storage location for all derivatives up to the desired degree.
Automatic differentiation breaks the code down into ele-
mentary unary and binary operations. Then, for each
mathematical operation in the code, the derivatives are cal-
culated by chain rule as follows:

oxi

oxj
¼
Xi�1

k¼1

ofi

oxk

oxk

oxj
; j ¼ 1; 2; . . . ; n ð15Þ

Since fi is unary or binary, the sum in (15) consists of a sin-
gle term or a sum of two terms [29].

In the backward mode, a computational graph for all the
mathematical operations have to be constructed to repre-
sent the computations at each variable xi, i = 1,2, . . . ,m

and links to nodes for the operands of operation. A storage
location for the derivative of each node has to be allocated.
All the variables are considered as independent at the
beginning. Therefore, the derivatives are all zero except
at nodes for f where the derivative value is 1. Then going
backward one by one, the variables change to dependent
and the derivative updated using chain rule as follows:
of new

oxk
¼ of old

oxk
þ of

oxi

ofi

oxi
; k ¼ 1; 2; . . . ; i� 1 ð16Þ

At a binary node, ofi
ofk

is zero for all but one value of k. Un-
like forward approach, the computations required by back-
ward approach are independent on the number of non-zero
derivatives.

ADIFOR deploys a hybrid forward/backward scheme,
and thus, reduces the required time. That is, ADIFOR is
generally based on forward mode, but it uses the backward
mode to compute the gradient of the assignment statements
containing complex expressions.

In this study, ADIFOR was used to generate the deriva-
tive code of the two-dimensional finite element groundwater
flow and contaminant transport model (MCB2D) [36]. The
resulted code is a FORTRAN subroutine including the
derivative code for the pre-defined input parameters, in
addition to the original model code. All the work, which
has to be done, is to identify the dependent parameters (in
this case the concentration of pollutant) and the indepen-
dent parameters (hydraulic conductivity, and groundwater
recharge). As a result, the derivative code of the original
model was obtained and the required gradient vector was
evaluated with a very good accuracy and fewer computa-
tions in comparison to finite difference method.
4.1.1. ADIFOR and other automatic differentiation

methods

There are different tools and software for derivative cal-
culation using automatic differentiation. A good survey of
these tools can be found in [17,35]. In this research, we are
interested in a method that can be applied directly to the
model code, and produce the derivative code for a pre-
defined dependent and independent variables. The ground-
water model, which was used in this study, is written in
Fortran language. Therefore, it was preferable to use a tool
works with FORTRAN.

Tools of automatic differentiation are classified into two
groups according to the computer language: (1) GRESS,
PADRE-2, ADIFOR, and Odyssee are automatic differen-
tiation for FORTRAN codes, and (2) ADOL-C and ADIC
work with C codes. GRESS, PADRE-2, and ADOL-C
generate a trace of computation by writing down the par-
ticulars of each operation performed. Thus, the code gets
very huge and the time required is large [35].

ADIFOR, Odyssee, and ADIC transform the source
into the derivative code by applying the rules of automatic
differentiation. Odyssee uses the backward mode, and it
imposes certain restrictions on the FORTRAN input and
runtime environment. ADIFOR deploys a hybrid for-
ward/backward scheme, and thus, reduces the required
time. Generally, the advantages of ADIFOR over other
automatic differentiation tools are:

1. Ease of usage: It can be used without any run-time sup-
port and it can be easily used with different computing
environments.
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2. Portability: It supports all Fortran 77 codes including
arbitrary calling sequences. Since the majority of
groundwater models are written in Fortran, this makes
ADIFOR good suited for these models.

3. Accuracy: The produced derivative code is accurate up
to machine precision.

4. Efficiency: The time requirement of ADIFOR is less
than that of finite difference. It does not require any
change of the original code but identification of depen-
dent and independent variables.

5. Case study: probabilistic contaminant transport

modelling

Fig. 3 shows the area of study with the land use and
sources of pollution. The area is located in Bait Lahia,
which is in the northern part of the Gaza Strip, Palestine.
The study area is about 23 km2 and the water-bearing layer
is composed of gravel and sandstone covered with sand
dunes from the Quaternary era. Therefore, the area is
highly vulnerable to groundwater pollution.

A waste water treatment plant is the main source of
groundwater pollution in the area. Bait Lahia treatment
plant has been in operation since 1973, and it is one of
the plants, which have been inherited from the Israeli gov-
ernment by the Palestinian Authority after the Oslo agree-
ment. Because of increasing population and increasing
Fig. 3. The st
inflow, the sewage influent has been constantly overflowing
the designed capacity. The amount of sewage influent is
about 8000–10,000 m3/day, and less than 30% of the influ-
ent is currently being treated. As the area is well recharged
from rainfall and the infiltration rate is high because of the
existence of sandy dunes, the Bait Lahia treatment plant is
near groundwater bodies of high-quality. High-level of
nitrate concentrations were detected from the aquifer
nearby, and it is most likely that the excess wastewater
influent is responsible for the deterioration of the water
quality of the aquifer.

5.1. Model description

MCB2D is a two-dimensional finite element groundwa-
ter flow and transport model written in FORTRAN com-
puter language. The model couples groundwater flow
with contaminant transport using a Multiple Cell Balance
Method [36] to solve the two-dimensional advection disper-
sion equation.

The model in this study consists of 532 nodes and 977
elements. Of course this model is not so large when com-
pared to other models, but it is large enough to show the
efficiency of the proposed FORM. The intensity of ele-
ments was increased at the location of the pollution sources
(e.g. wastewater treatment plant) as shown in Fig. 4. The
aquifer in the area is phreatic with groundwater depth var-
ies between 20 and 35 m. Calcareous sandstone, and gravel
udy area.



Fig. 4. Finite element mesh and boundary conditions.
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with high hydraulic conductivity are the main compo-
nents of the aquifer media. The aquifer parameters were
input into the model based on the statistical analysis of
these parameters. Values of hydraulic conductivities were
obtained from the literature [10,25,37], and from pumping
tests data. Groundwater recharge data were obtained from
the literature based on different methods of recharge anal-
ysis [2,10,16,25]. Historical data of pumping rates were
obtained from the Palestinian Water Authority (PWA),
and input into the model. The derivative code of the model,
which was obtained using ADIFOR, was coupled with
the proposed FORM approach code. Input parameters,
which were considered as uncertain, are the groundwater
recharge and hydraulic conductivity. The first and second
moments of these variables were obtained from statistical
analysis.
V

5.2. Boundary and initial conditions

The boundary conditions for both flow and transport
problems are shown in Fig. 4. A Dirichlet-type of bound-
ary condition was assigned to the western part of the model
(sea line) at which the head is constant. The head at this
boundary was assumed to be zero. Neumann-type bound-
aries of specified flow were assumed at the residual parts of
the model boundaries. Based on groundwater monitoring
in the area, it was found that the groundwater flow direc-
tion is generally from east to west (i.e., the contour lines
are almost parallel to the sea). The flow amounts at these
boundaries were obtained from groundwater contour
maps, and from the literature [3,26]. For the transport
problem, nitrate was considered as the main pollutant in
the aquifer. Therefore, a constant source of nitrate was
assumed beneath the wastewater treatment plant.

The computed nitrate concentrations in the model
domain were expressed in dimensionless form as a percent-
age of those infiltrate beneath the treatment plant. Steady
state conditions were assumed at the beginning of the sim-
ulation (year 1995), then the results of the steady state sim-
ulation were used for the transient state (from 1995 to
2005).

The accuracy of the numerical solution is influenced by
the resolution of spatial discretisation (i.e., grid size),
and the time discretisation (i.e., time-stepping). Selection
of the time step is not easy because it affects the accuracy,
and the convergence of solution. In one hand, small time
steps increase the accuracy of output to some extent. On
the other hand, small time steps lead to numerical diffusion
and oscillations, require much computations, much com-
puter storage, and more input data. Time discretisation
for the simulation of solute transport can be expressed by
a stability criterion, the Courant number [1], which is
defined as the ratio of groundwater velocity multiplied by
the minimum time step divided by the characteristic dis-
tance between grid nodes. Therefore, the time step should
satisfy the Courant number equation:

Dt 6
Dx ð17Þ



Fig. 5. Initial conditions for groundwater head (upper map [meters above m.s.l.]), and nitrate concentrations (lower map [mg/l]).
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where Dt is the time step, Dx is the distance between nodes
and V is the groundwater velocity.

Since the nitrate concentration records in groundwater
are available on annual basis, a 1-year time step was
assigned. It is found that a 1-year time step satisfies the
condition of Eq. (17). Fig. 5 shows the initial groundwater
head and nitrate concentrations in the year 1995.
5.3. Coupling FORM with derivative code and

MCB model

MCB2D model is written in FORTRAN77 language
and has 1770 lines of code. It needed 10 s to run the tran-
sient flow and transport code for this study area using a
AMD-1000MHz processor. The results of the flow model



Fig. 6. Nitrate concentration at the end of 10 years contaminant transport simulation [mg/l].
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were checked against groundwater monitoring data, and
modelling results of the Gaza Strip from the literature
[26]. Fig. 6 shows the nitrate concentrations at the end of
the 10 years transient simulation period.

Automatic differentiation was used to obtain the follow-
ing derivatives:

oC
oK

� �
t

ð18Þ

oC
oR

� �
t

ð19Þ

where C is the pollutant concentration at any time t; K is
the hydraulic conductivity and R is the recharge.

ADIFOR was applied on the original code of
MCB2D to generate the derivative code with respect to
hydraulic conductivity and groundwater recharge as in
(18) and (19). FORM model was considered as the main
code, which calls the derivative code and the original
function. At each run, FORM reads the input data file,
gets the derivative, the function output from the gener-
ated code by ADIFOR, and starts the iterations. Itera-
tions stops when the error (i.e., the difference between
two successive iterations, as expressed in (11)) does not
exceed 1E�05. Thus, iteration procedure continues until
the convergence achieved for the pre-defined accuracy.
For this case study, the generated derivative code needed
50 s to be executed with the original code coupled with
FORM model.
5.4. Limit state function

Different pollutants usually exist in the groundwater as a
result of leaching from land use activities. For each type of
pollutant, there is a maximum permissible value, which
should not be exceeded. Therefore, the main aim of con-
taminant transport modelling is to investigate if the level
of pollutants at a certain location and time exceeds its max-
imum allowed value. The limit state function in this case
can be written as:

GðX Þ ¼ Ct � CðX Þ ð20Þ
where C(X) is the value of concentration obtained by the
model, Ct is the maximum permissible value of pollutant
concentration. The wastewater treatment plant (refer to
Fig. 3) was considered as a continuous source of pollution
(nitrate) with a concentration value equals C0. The formu-
lation of the limit state function was done based on Cawl-
field approach [7]. According to this approach, the value of
pollutant concentration at a receptor well (Cx) was norma-
lised by the source concentration (C0). That is, the limit
state function was formulated in dimensionless form based
on the following equation:

GðX Þ ¼ C
C0

� �
t

� Cx

C0

� �
ð21Þ

where C is a pre-defined value of a contaminant concentra-
tion at a target location t (maximum permissible value that
should not be exceeded); C0 is the concentration at the



Table 2
Statistical information of hydraulic conductivity, and groundwater
recharge in lognormal distribution

Statistics Ka Rainfallb R (%)c

Lognormal distribution

Range 1.71 1.64 0.52
Minimum 2.71 4.74 3.45
Maximum 4.42 6.38 3.97
Mean 3.60 5.76 3.64
Standard deviation 0.51 0.44 0.14
Variance 0.26 0.19 0.02
Skewness 0.01 �0.45 0.53
Kolmogorov–Smirnov Z 0.466 0.560 0.41

a Hydraulic conductivity in m/d.
b Rainfall in mm/a.
c Net groundwater recharge as a percentage of rainfall.
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source of pollution and Cx is the value of concentration ob-
tained from the model.

Target concentration was assumed as the maximum per-
missible value of the pollutant in groundwater in the entire
model domain. The results of the proposed FORM model
are: the probability of failure contour map for the pre-
defined limit state function, uncertainty analysis, and sensi-
tivity analysis. All computations were carried out based on
transient simulations, and the results were obtained at the
end of the transient period (10 years).

5.5. Probability of failure

Two input parameters (groundwater recharge and
hydraulic conductivity) were considered in this case study
as random variables. The hydraulic conductivity and
groundwater recharge are assumed constant in the physical
space, and variable in the probability space. The required
data for the model input were obtained based on field
investigations, pumping tests data, and data from literature
[11,26]. Tables 1 and 2 list the statistical descriptors of
hydraulic conductivity and groundwater recharge in nor-
mal and lognormal distributions, respectively.

From the descriptive statistics in Tables 1 and 2, it is
obvious that the skewness factor of hydraulic conductivity
for lognormal probability is low (0.01) compared to the
case of normal distribution (0.675). In addition to skewness
factor, the Kolmogorov–Smirnov test, which is used to
decide if a sample of data follows a specific probability dis-
tribution [19], was carried out. The Kolmogorov–Smirnov
parameter (Z) is computed from the largest difference (in
absolute value) between the observed and theoretical
cumulative distribution functions. It was found from the
results of the Kolmogorov–Smirnov test, that the Z param-
eter for lognormal distribution of hydraulic conductivity
equals (0.466), while it is (0.708) in the case of normal dis-
tribution. This is also evidence that the hydraulic conduc-
tivity is more likely to follow the lognormal distribution
rather than the normal distribution. Thus, the hydraulic
conductivity was considered to follow the log-normal dis-
tribution. Since the hydraulic conductivity values (in gen-
Table 1
Statistical information of hydraulic conductivity, and groundwater
recharge in normal distribution

Statistics Ka Rainfallb R (%)c

Normal distribution

Range 68.00 476.43 21.5
Minimum 15.00 114.57 31.50
Maximum 83.00 591.00 53.00
Mean 41.58 321.00 38.55
Standard deviation 16.69 140.67 5.43
Variance 433.13 19,781.45 29.53
Skewness 0.675 0.381 0.87
Kolmogorov–Smirnov Z 0.708 0.681 0.65

a Hydraulic conductivity in m/d.
b Rainfall in mm/a.
c Net groundwater recharge as a percentage of rainfall.
eral all the hydrogeological parameters) are positive, the
log normal distribution is consistent with this fact because
the lognormal distribution contains no negative values.

Similarly, the statistical analysis of groundwater
recharge reveals that the skewness factor of lognormal dis-
tribution equals (0.53), which is less than that of normal
distribution (0.87). The results of the Kolmogorov–Smirov
test show that the Z value of groundwater recharge for
lognormal distribution is smaller than the case of normal
distribution (Z equals 0.65, and 0.41 for normal and log-
normal distribution, respectively). Therefore, the ground-
water recharge is more likely to follow log-normal
distribution.

In addition to Kolmogorov–Smirnov test, probability
distributions for both parameters were examined using
goodness of fit for both normal and lognormal distribu-
tion. For the hydraulic conductivity, it was found that
the maximum differences between measured and predicted
plot is 0.139, and 0.091 for normal and lognormal distribu-
tions, respectively. For the rainfall, it was found that the
maximum differences are 0.157, and 0.129 for normal and
lognormal distributions, respectively. Obviously, the maxi-
mum difference between measured and predicted plots is
smaller in the case of lognormal distribution than in the
case of normal distribution.

The limit state function was formulated as described
above in (21), and the transient state simulation was carried
out. Nitrate (NO3) is the simulated pollutant in this case
and the maximum permissible value (Cx/C0) equals 50%.
The result of FORM-contaminant transport model at the
end of simulation period is presented in Fig. 7. The failure
probability map is a function of space for the pre-defined
normalised target concentration [(Cx/C0) P 50%]. As the
groundwater flow direction is generally westward, areas
with high probability of failure exist downstream to the
west of the sources of pollution (wastewater treatment
plant). The eastern and northern areas have low probabil-
ity of failure. The probability of failure in some areas is
almost zero. That means, for the given conditions and for
this target concentration, nitrate concentration at these
areas will not ever exceed the maximum permissible value.



Fig. 7. Probability of exceedance in case C/C0 6 50.

H. Baalousha, J. Köngeter / Advances in Water Resources 29 (2006) 1815–1832 1825
FORM can also compute the values of individual ran-
dom parameters in the probability space at the design point
(X value in (10)). Since the random variables change in the
probability space, these variables can get any value
between the maximum and minimum range of each. The
values of input random parameters at the design point
illustrate the conditions leading to a particular realisation.
These values give the highest probability of exceeding the
threshold (i.e., C/C0 P 50%). The contours of hydraulic
conductivity (K) and groundwater recharge (R) at the fail-
ure point are shown in Fig. 8. The values of hydraulic con-
ductivity that lead to exceedance are generally higher than
the mean value (mean value of hydraulic conductivity is
41.58 m/day). Hydraulic conductivity increases gradually
from the source of contamination to the maximum value
at other locations (from 40 m/day at the source of pollu-
tion to 85 m/day away from it). The contour map of
groundwater recharge at the failure point shows also
increase of this value along the movement paths of contam-
ination. Similarly, the values of groundwater recharge are
generally greater than the mean value as shown in the
figure.

5.6. Uncertainty analysis

Coefficient of variation (CV) is a statistical measure of
the deviation of a variable from its mean, and it is used
to determine the degree of relative dispersion of the popu-
lation. That is, CV is the standard deviation r divided by
the mean value l of a population. The probabilistic model
for the previously described limit state function was carried
out at different values of CV. First, the CV was changed by
changing the mean value only keeping the standard devia-
tion constant. The CV of hydraulic conductivity was given
four different values: 0.25, 0.50, 0.75, and 1.00 and the
model were run keeping the other parameters constant.
Then, the same procedure was followed for groundwater
recharge. Finally, both hydraulic conductivity and ground-
water recharge were given different values of CV simulta-
neously, and the results of probability of failure were
obtained for each case. This procedure was followed at dif-
ferent nodes in the model domain including the municipal
wells locations in the area. A typical result of this analysis
at a municipal well location is presented in Fig. 9. This fig-
ure shows the probability of failure at different values of
CV based on changing mean values, keeping standard devi-
ation constant. The first diagram in the figure (top) is
for hydraulic conductivity, the second one (middle) is for
groundwater recharge, and the last one (bottom) is for
both groundwater recharge and hydraulic conductivity
together. Based on the analysis of the results, it is found
that the probability of failure decreases always, when the
CV increase by decreasing the mean value and keeping
standard deviation constant. Also the probability of failure
increases when the mean value increases, as a result of
increasing output.

Similarly, the CV was changed by increasing the stan-
dard deviation only, keeping the mean value constant.
Any increase in the CV by increasing the standard devia-
tion leads to dispersion of the probability outcome, and



Fig. 8. Contour map of hydraulic conductivity (top [m/d]), and groundwater recharge (bottom [m]) at the failure point.
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thus, the probability of failure increases. Fig. 10 illustrates
this fact by example of two probability density functions.
The population for the two functions is the same as well
as the mean, but the standard deviation for population 2
is twice the standard deviation of population 1. Clearly,
the distribution of population 2 is dispersed around the
mean as a result of increasing the standard deviation.
The probability of failure as shown in the figure is the area
under the curve to the right of the maximum permissible
value. It is obvious that the area under population 2 is lar-
ger than that under population 1. As a result, as the stan-
dard deviation increases, the probability of failure
increases.

5.7. Sensitivity analysis

In addition to uncertainty analysis, sensitivity of the
probability of failure with respect to each random variable
was investigated. Sensitivity analysis is important to allo-
cate and design of sampling sites. Since the sampling wells



Fig. 9. Effect of CV variation (by varying the mean value of model input) on model output. (Typical figure at municipal well in the area.)
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should be located at points of high sensitivity, this analysis
is very helpful in designing site monitoring wells. There-
fore, sensitivity is very useful in the design of groundwater
monitoring networks. Sensitivity of the probability of fail-
ure Pf with respect to each random variable can be com-
puted as follows [23]:

oP f

oxi
¼ � axi/ðbÞ

rxi

ð22Þ

where rxi is the standard deviation of a parameter xi, / is
the standard normal probability density function, and b
is the reliability index. The vector a is called alpha sensitiv-
ity vector and can be computed for any random parameter
xi as follows:

axi ¼ �
rxiGðX Þ
jrxiGðX Þj

ð23Þ
where G(X) is the limit state function in the standard nor-
mal space evaluated at the design point, and $xi is the gra-
dient of the function G with respect to the random variable
xi. The alpha vector in (23) can be obtained within the
FORM computations, and thus, no extra computations
are needed to calculate the sensitivity.

Figs. 11 and 12 show the sensitivity of the probability
of failure with respect to hydraulic conductivity, and
groundwater recharge, respectively (ak, and ar). From the
sensitivity figures, the following conclusions could be
drawn:

• In general, the probability of failure is more sensitive to
hydraulic conductivity than to groundwater recharge.

• It is also clear the sensitivity of hydraulic conductivity is
high at the sources of pollution and in the contamina-
tion path.



Fig. 10. Example of probability density function with the same mean and
different standard deviation.
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• The negative values of sensitivity at some locations indi-
cate that any decrease in the value of a parameter at
these particular locations leads to increase in the proba-
bility of exceedance.

6. Comparison and validation

The obtained results by the developed FORM model
were compared with Monte Carlo simulation to check
the accuracy and the efficiency of the proposed method.
The gradient vector required for FORM simulations was
obtained using automatic differentiation. Therefore, the
proposed methodology, which couples FORM with auto-
Fig. 11. Sensitivity of contaminant transport m
matic differentiation (FORM-AD), was compared with
FORM model using finite difference method (FORM-
FD). The comparison was applied at different locations
distributed in the model domain. Fig. 13 shows the proba-
bility of failure using the following methods:

• FORM using automatic differentiation to obtain the
derivative of the limit state function (FORM-AD
model).

• Monte Carlo simulation (MCS).
• First order second moment method (FOSM).
• FORM using finite difference method to obtain the

derivative of the limit state function (FORM-FD model).

The same principle of reliability setup, which was dis-
cussed above, was used and applied with FOSM method.
The intended reliability index b was derived based on (4).
FOSM involves the first order expansion around the mean
to estimate the first and second moments [18]. So, it
depends on Taylor series expansion of the limit state func-
tion G(X) around the mean values of random variables [18].
The Taylor series expansion of the limit state function was
developed as follows:

GðX Þ � GðX Þ þ
Xn

i¼1

oGðX Þ
oxi

ðxi � liÞ

þ 1

2!

Xn

i¼1

Xn

j¼1

o2GðX Þ
oxioxj

ðxi � liÞðxj � ljÞ þH:O:T

ð24Þ

where GðX Þ is the limit state function evaluated at the
mean values, n is the number of random variables, and
odel with respect to hydraulic conductivity.



Fig. 12. Sensitivity of contaminant transport model with respect to groundwater recharge.
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H.O.T are the higher order terms. The mean of the func-
tion is equal to the expectation value E[(GX)], which is

E½GðX Þ� � GðX Þ þ 1

2!

Xn

i¼1

Xn

j¼1

o
2GðX Þ
oxioxj

E½ðxi � liÞðxj � ljÞ�

ð25Þ
and the variance can be computed as follows:

r2½GðX Þ� ¼ E½ðGðX Þ � E½GðX Þ�Þ2�

�
Xn

i¼1

r2ðxiÞ
oGðX Þ

oxi

� �2

þ 2
Xn

i¼1

Xn

j¼1þ1

Cðxi; xjÞ
oGðX Þ

oxi

� �
oGðX Þ

oxj

� �

ð26Þ
where C(xi,xj) is the covariance between variables xi and xj,
and r2(xi) is the variance of the variable xi.

Substituting the results of (25) and (26) in (4), the
reliability index b, and the probability failure can be
computed.

The use of the finite difference method to estimate the
derivative of the functions has many drawbacks. Increment
size, for example, affects the accuracy of the finite difference
estimation, in addition to convergence rate. A small incre-
ment is desired to reduce the truncation error of the finite
difference estimate but a very small increment size increases
subtractive cancellation errors. Based on studies carried
out by Hamed et al. [12,13], the increment size in the finite
difference should be chosen as a small fraction of the stan-
dard deviation of the random variable. Therefore, the
increment size was chosen as 0.1 of the standard deviation
of each random variable. The FORM-AD model converges
after only 5–10 runs with a very good accuracy as shown in
the figure. The reference of accuracy of FORM is the
Monte Carlo results. The obtained results of Monte Carlo
simulation were based on 1000 model runs. Monte Carlo
simulation procedure can be described as follows: the input
values of the hydraulic conductivity and groundwater
recharge (random variables) were randomly sampled using
a random number generator. With this realisation, the
transport model was run and the output was obtained.
Then, using a new sampling, the transport model was run
again, and another set of results were obtained. If the
resulted concentration value is less than the pre-defined
value, then the hit value equals 0, else, the hit value equals
1. At the end, the probability of failure could be calculated
by dividing the number of hits by the total number of runs.
The results of Monte Carlo simulations were used as a ref-
erence to check the accuracy of other methods and com-
pare them with the proposed method.

The simulations of the above mentioned models were
done using a AMD-1000MHz processor. The run time
and number of runs for each model are shown in Table 3.
Although the finite difference method needs less time to
evaluate the model, but it requires more runs to converge.
Consequently, the total time required by FORM-FD is
more than that required by FORM-AD. In this study, the
difference in time between FORM-AD and FORM-FD is
not so large. However, we are talking about a model of
532 nodes and 977 elements. It is small in comparison to
large models with ten of thousands of nodes. In that case,
every extra second in each iteration does affect the total time
of run. On the other hand, we are talking about a model of
two random variables. If the number of variables increases,
the total time required by FORM-FD will increase while



Fig. 13. Probability of failure using FORM-AD, Monte Carlo, FOSM, and FORM-FD at different model nodes.

Table 3
Efficiency of FORM-AD, MC, and FORM-FD

Method Model components Timea/run No. runs Total timea

FORM-AD Contaminant transport model, derivative code, FORM code 50 7 350
MC Contaminant transport model, sampling code 10 1000 10,000
FORM-FD Contaminant transport model, FORM code 10 13 · 3 390

a Time in seconds.
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that of DORM-FD will not. It is clear from Fig. 13 that the
FORM-FD model underestimates the probability of fail-
ure. The FOSM approximation is good only when the prob-
ability of failure is not extreme. In other words, if the
probability of failure is very small or very large, FOSM
results are very poor while Monte Carlo requires more runs
for such probabilities. Using the finite difference method to
estimate the first order derivative is not accurate and leads
to cumulative error in FORM-FD.

7. Conclusions

From the analysis of the results obtained in this study, it
is found that the modified FORM method provides a very
good tool to incorporate the uncertainty in model parame-
ters in groundwater modelling, and to carry out sensitivity
analysis. The characteristics of FORM-AD are efficiency
and robustness. The proposed FORM-AD method
requires only 5–10 runs to converge to the solution with
a very good tolerance value (i.e., error is less than
1E�05). When compared to other methods (e.g. Monte
Carlo simulation or FORM with finite difference method),
the developed FORM-AD method has shown a good effi-
ciency. The use of automatic differentiation in FORM
has promoted a solution that is both accurate and efficient.
This is obvious since automatic differentiation requires few
runs and produces accurate results. From the comparison
between different methods of uncertainty analysis, it was
found that the proposed FORM with automatic differenti-
ation is more efficient in terms of accuracy and computa-
tion effort. Moreover, the FORM-AD method has
another advantage when compared to MCS, which is the
added inherent sensitivity analysis. FORM-AD produces
sensitivity results without any further computations since
it is part of FORM optimisation approach.

Results of sensitivity analysis reveal that the hydraulic
conductivity has greater effect on the model results than
the groundwater recharge. Uncertainty of model input
parameters plays a big role in probabilistic model output.
Based on the results of uncertainty analysis, it was found
that the probability of failure increases as the mean value
or the standard deviation of the input parameters increases.
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