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Introduction: 

      Let pS  denote the class of functions of the form 
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which are analytic and p-valent in the unit disk }1:{  zzU . Also 

denote by pT  the class of functions the form 
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which are analytic and p-valent in U.  

       A function pSzf )( is to be starlike of order )0( p , 

denoted by pS ,)(  if and only if 

mailto:abedshakor@yahoo.com


A Subclass of P-valent Uniformly                  Abdul Shakor S. Teim & J. M. Shenan 

(10)   

 (1.3)            ,)(
)(

)(
Re Uz

zf

zfz








 

  

and it is called  convex of order )0( p , denoted by ,)(K  if 

and only if 
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If )(zf  given by (1.1) and pSzg )(  is defined by  
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then the convolution or Hadamard product of )(zf  and )(zg  is given 

by 
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      A function  pSzf )(  is said to be  uniformly starlike 

function of order  denoted by  )( pS  if and only if 
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for some )1( p   and all Uz  and is said to be 

,  uniformly convex of order   denoted by )( pK  if and 

only if 
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for some )1( p   and all ( Uz ) . 

The class andS p )(  )(pK are introduced by Patil and Thakar [3], 

while the classes )(S and )(K  were first studied by Reborston [8], 

Schild [1] , , and others .The classes  )( pS  and )( pK  were 

introduced and studied by Goodman [2] , RØnning [5] , and others. 

Let 

(1.9)    ppPPpp TKKTSS  )()(,)()(   
 , 

)( pS  = Pp TS )]([   , and    

)( pK  = .)]([ Pp TK    
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The classes andS p )( )(pK   have been studied by Silverman 

[6] and Silvia [7], and others. 

     The incomplete beta function );,( zcap  is defined by  
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For ,...,3,2,1,...,2,1,0  ac    where na)(  is the Pochhammer 

symbol defined by  

(1.11)        

na)( =













,...2,1,)1)...(2)(1(

0,1

)(

)(

Nnnaaaa

n

a

na
      

      The linear operator ),( caLp , on the class  pS  is defined by  
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The Linear operator ),( caL is defined by Carlson and Shaffer [4]. 

  It may be noted that 

),( aaLp )()( zfzf  and )1,2(pL )(zf )(zfz  , also 
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Definition 1. For 0)1(   andp , we let ),( n

pS be the 

subclass of pS  consisting of function )(zf  of the form (1.1) and 

satisfying the following 
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Also let ),( n

pT = ),( n

pS pT  . 

It may be noted that the class ),( n

pT extends the class of starlike, 

convex, prestarlike,  - uniformly starlike and  -uniformly convex 

by giving specific values of .,,,,, candapn  
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Here we mention the following important subclasses of the class 

),( n

pT  . 

(i) For 1 pmca  the class ),( n

pT reduces to the class  - 

uniformly starlike functions. 

(ii) For 1,2  pmca , we obtain the class  - uniformly convex 

function. 

(iii) The class of starlike function can be obtained by choosing 

1 pmca and  =0, further the class of convex function can 

be obtained by choosing 1,2  pmca , and  =0. 

(iv) For 1 pmc , and a=2- 2  we obtain the class pre-starlike 

function. Several other classes studied by various research workers 

can be obtained from the class ),( n

pT . 

 

A class of fractional derivative operator 
 

Following Raina and Nahar [10] (see also [9]), the fractional 

derivative operation  ,,

,0 zD of a function )(zf is defined as follows. 

Definition 2.  For RandNmmm   ,;1                
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where the function )(zf  is analytic in a simple connected region of 

the z-plane containing the region, with order 

(2.2)           )(zf =o ,0,)( zz
r

 

where 1},0max{  r  and the multiplicity of 1)(  mtz  is 

removed by requiring )log( tz   to be real when 0)(  tz  and is 

well defined in the unit disk. 

    The operator defined by (2.1) includes the known Riemann-

Liouville fractional derivative operator
 ,,

,0 zD )(zf . Indeed we have 

(2.3)              
 ,,

,0 zD )(zf =


zD ,0 )(zf ,   
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   It is convenient to introduce here the fractional operator  ,,

,0 zJ   

which is defined in term of  ,,

,0 zD as follows . 

(2.4)     ,,
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It may noted that if    in (2.4), then by virtue of (2.3) we have  

(2.5)            ,,

,0 zJ )(zf =  z)2( 


zD ,0  )(zf  

and for 0    

(2.6)           ,0,0

,0 zJ  )(zf = )(zf  

also for  1   

(2.7)          ,1,1

,0 zJ  )(zf = z )(zf    

    Before starting and proving our main theorems, we need the 

following lemma to be used in the sequel (cf.Raina and Nahar [10]).  

 

Lemma 1. If  )1},0max{;0(   n , then  
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Coefficient estimates 
 

Theorem 1: A function )(zf defined by (1.2) belongs to the class 

),( n

pT , p 1 0, and  if and only if   
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and the result is sharp .  

 

Proof. It is clear from (1.12) and (1.13) that 
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where )(nBm  is given by (3.2). 

Assuming that (3.1) holds , then it suffices to show that  
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We have 
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This expression is bounded above by )( p  if   
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Conversely, assume that )(zf  is in the class ),( n

pT , and z is real 

then we have from (1.14) and (3.3) 
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Letting 1z  along the real axis, we obtain the desire inequality 

(3.1). 

The equality in (3.1) is attained for the function 
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Corollary 1. Let the function )(zf  defined by (1.2) be in the class 
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Distortion theorem 
 

Theorem 2. Let R ,, such that  
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For z U \{0} and 1 the equalities in (4.1) and (4.2) are attained 

by the function given by (3.4). 

 

Proof. Using the definition of fractional operator  ,,
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in (2.4), and Lemma 1 we have  
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Under the conditions stated in the theorem, we observe that the 
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Hence, 
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This is the assertion (4.1). 

The assertion (4.2) can be proved similarly. 

 

Corollary 2. Let the function )(zf  defined by (1.2) be in the class 

),( n

pT  . Then 
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zzf p

)]()1([

)(
1)(




. 

 

Proof. Setting 1,0  pnand  in theorem 2, using the 

relation in (2.6) we get the result. 

 

Corollary 3.  Let the function )(zf  defined by (1.2) be in the class 

),( n

pT .Then 
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Proof. Setting 1   in theorem 2, using the relation in (2.7) we 

get the result. 

            

Radius of convexity for the class ),( n

pT . 

 

Theorem 3. Let the function )(zf  defined by (1.2) be in the 

class ),( n

pT . Then )(zf  is convex in the disk ),(11 rrz  , 
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The result is sharp for the function )(zf  defined by (3.4). 

 

Proof.. To establish the required result it is sufficient to show that 
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which is equivalent to show that  
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pTzf  , we have from Theorem 1 
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Thus (5.2) is true if 
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Setting 1rz   in (5.4) and simplify we get the result. 

     

Integral transforms 
 

Theorem 4. Let the function )(zf  defined by (1.2) be the 

class ),( n

pT . Then the integral transform  
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Closure properties 
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(7.1)          )()()(
)1)((

1




















panBp
m

pnp
nm

pn

, 

Therefore                            

              )()(
)1)((

1

nBp
m

pnp
m

pn




















nd  

                                        





















m

j

njm

pn

a
m

nBp
m

pnp

21

)
1

()()(
)1)((




   

                                       )(  p  
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Then .),()( n

pTzf  iff it can be expressed in the form 
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This completes the proof of Theorem. 
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