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Abstract: Lawton and Sylvestre (1971) consider a fixed sample 

size estimation procedure for a nonlinear regression model. In this 

paper we propose a stochastic approximation – iterative least 

squares procedure. Our Procedure leads to a significant reduction 

in the sample size. 

1. INTRODUCTION AND SUMMARY 

Consider the following nonlinear regression model: 
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; XgXY   (1.1) 

    Where g: , rP
 with 

P  and 
r being Euclidean 

spaces,   is an unobservable random error, with E   = 0, var   = 
22;  is a constant that may depend on  

~~
; XYX  is an observable 

random response that can be observed at each level ;
~

rX   and 

P
~
  is the parameters of interest. Based on the observations 

.,...., 21 nYYY  it has been known, [3], [4], [5], and [7], via classical 

procedures, how to estimate  P ,...,1
~
 . Our interest will be in 

the class of models which contain a component linear in some 

parameters but nonlinear in the remaining parameters. The objective 
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will be to estimate 
~
  sequentially using a technique in which the 

optimal stochastic approximation method [1], is combined with the 

approach of eliminating linear parameters proposed by [4]. The 

sequential procedure is also compared with the fixed sample size 

procedure based fully on the Lawton and Sylvestre method. 

Now to achieve our objective, i.e. to estimate 
~
  sequentially, 

we can  then use the following optimal stochastic approximation 

procedure [1]: Choose 

 1

~



  as an arbitrary initial estimate of 
~
 , then define the estimating 
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and na  is sequence satisfying  
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 and  
~~


n
I  is (P×P) – 

Fisher information matrix. 

The Lawton and Sylvestre method (1971) of estimation may 

be applied when the nonlinear regression model (1.1) has the special 

form 
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; XgXY jj

q

j

    (1.3) 

where q,12,11,1 ,.....,,   enter linearly into the model (1.3), 
)2(~

  

represents the vector of nonlinear parameters in (1.3), and the 









~)2(~

; Xg j   are functions only of the nonlinear parameters and the 

predictor variables, i.e. jg : .,....,2,1,)( qjrqp  
 their 

method is used for the fixed sample size case when observations 

nYYY ,....,, 21  are available. 

Using their procedure, we take 
)2(~



  as an initial value 
~ (2)
 of 

and then determine the companion set of "best" values for 
)1(~

  by the 

ordinary least squares procedure. 

Let      







)2(~)1(~

^

 ,)( )2(
~

1,1
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 
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'

)2(~
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2,1 ,.....,


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
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

















 q  

represent the vector of least squares estimates of the sj ',1  associated 

with a given set of ;'
)2(~

s  namely,   qP,21,2
)2(~

,...,   

Let 
~
Y  denote the (nx1) column vector of observed response 

values associated with the n observed values of the predictor vector, 

nix
i

,...,2,1,
~

 .  
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Let 
)2(~

G  denote the (n×q) matrix with elements 








~)2(~
; ij xg  , 

ni ,..,2,1 , .,...,2,1 qj   It then follows that, the vector 

,
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 . 

 The reduced "model" associated with (1.3) is then given by: 

  *

1
~)2(~)2(~

,1
~

; 

















q

j

jj XgXY   (1.4) 

Since 









)2(~.1


j

 are strictly functions of
)2(~

 's, the model in 

(1.4) is a nonlinear regression model with only (p-q) parameters rather 

than the p parameters in the original model. Lawton and Sylvestre 

(1971) proposed an iterative method like the linearization method, and 

steepest descent method, [4] to estimate the remaining unknown 

nonlinear parameters. This procedure of Lawton and Sylvestre 

estimates the nonlinear parameters in an inconsequent fashion, that is 

the whole data must be used to find values of the estimators. If the 

data is drawn sequentially, then these procedures will not be suitable 

to use. However the stochastic approximation procedures have been 

shown to be "optimal" [1] in the sense that the estimating sequence 

 )(

~

n
  is a consistent and asymptotically efficient estimator of 

~
  such 

that, the variance of the asymptotic distribution of  
~

)(

~

2

1

 
n

n  

achieves the Cramer-Rao lower bound for the variance of an unbiased 

estimator of 
~
 .  The above results show that it is worthwhile to 

consider the use of stochastic approximation procedures to estimate 
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sequentially the nonlinear parameters in (1.4), instead of using any 

iterative classical method.  

We will illustrate the fixed sample size procedure of [4] using the 

following example given by these authors. Let  

   


x
exy 2

1

  (1.5) 

Where 1  and 2 are two unknown parameters to be estimated, 

is an unobservable random error and (x) is a response variable at the 

level 1.x  appears linearly in the model (1.5). We seek the least 

squares estimators 21,


  which minimize 

    21

1

21
2, iX

i

n

i

eyQ
 



 (1.6) 

  It follows that the best value of 1  given 2  denoted by  21



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(1.7) 

Now substitute (1.7) into (1.5). The linear parameter 1  is 

automatically replaced by its best companion value  21 


 which is a 

function of 2  alone. 

One then obtains the reduced "model", given by: 

      *

21
2 


X

eXY
  

(1.8) 
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The parameter 2  will be estimated iteratively by using any of the 

iterative methods mentioned previously in section 1. 

2. STOCHASTIC APPROXIMATION – ITERATIVE 

LEAST SQUARES PROCEDURE 

In this section, we describe a new sequential procedure for 

estimating the parameters in the model given by (1.3), which 

combines the stochastic approximation technique, with the iterative 

least squares technique. For abbreviation this will be referred to, as the 

SA-ILS procedure. Clearly, the reduced "model" in (1.8) is a 

nonlinear model with a single parameter 2 . In order to estimate 2  

sequentially by using optimal stochastic approximation procedure (see 

Sec. 1), we shall consider certain probability models for   by using 

the reduced "model" in (1.8), and then find the probability density 

function for y, );( 2yf  by transformation. Thus by using optimal 

stochastic approximation procedure of the form (1.2), in order to 

estimate 2  sequentially, choose 

)1(

2



 as an arbitrary initial estimate 

of 2 , and then define the estimating sequence 
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 ,...2,1, n  (2.1) 

where nan /1  since the optimal value of (a) that minimizes the 

variance of the asymptotic distribution of 
















2

)(

2
2

1


n

n  [1] is given 

by 1. For notational convenience we set  

  
( )

1 2 2; , ;
n

n n nf Y f y  
 
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Then (2.1) becomes 
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'
( ) ( ) ( )^ ^

1.1 1,
~ ~ ~ ~(1) 2 (2) 2

( ),...,
n n n
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    
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 represent the vector of 

iterative least squares estimates. 

Let 1Y  be the first observation, 
2~

Y  be the vector of the first 

two observations, and so on, 
n

Y
~

 denoting the vector of the first n 

observed response values which have associated observed values of 

the predictor vector, niX
i

,....,2,1,
~

 . Let )(

)2(~

nG



 denote the 

( n q ) matrix with elements 



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
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n
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~
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, n=1,2,…. 

 

i.e. 
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(2.3) 
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The reduced model associated with (1.3) is then given by: 

 
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Since the 
 










2~
,1  j are strictly functions of the 

 
;'

2~
s  the model 

(2.4) is a nonlinear regression model with only (p-q) parameters, and 

we will estimate them by using the optimal stochastic approximation 

procedure of the form (2.2). The main idea of SA- ILS procedure is to 

estimate the parameters which enter the model linearly, by using an 

iterative form of least squares estimator, sequentially, and then use a 

proper optimal stochastic approximation procedure to sequentially 

estimate nonlinear parameters. Therefore, we will use iterative least 

squares procedure in order to estimate  21   sequentially. 

Now, we illustrate the use of the iterative least squares procedure 

using the example discussed by [4]. From (1.7) we have 
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Therefore the SA_ILS procedure is given by the following two 

consecutive procedures: 
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2)1(

1

2

1

)1(

1

)(

1

)(

2)(

2

)(

2

1








, n=1,2,…  

Where 

)1(

2



  is an arbitrary initial value for the sequence 











  )(

2

n

  and 




















1

)1(

2

/1

)1(

1

X

ey


 is an initial estimate of 











  )(

1

n

 based on 











  )1(

2  

The following algorithm illustrates the computation of the first three 

estimates for 1  and 2  in the previous example using the SA_ILS 

procedure:  

Step 1: (Initialization): let 

)1(

2



  be an arbitrary initial estimate of 2 . 

Step 2: (First approximation): For 2  = 

)1(

2



  and data  11 , yx , the 

value of 1  which minimizes 

2

)(

11
1

)1(

2













x
ey

  is obtained as 

1

)1(

2/1

)1(

1
x

ey





  
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Step 3: (Improvement): Treating 

)1(

1



  as if it was the known true 

value of 1 , the second estimate of 2  is obtained from 

 
 

,
2

22

1
)(

2

)(

2

)1(

2

^

2

^

2

;

/;1
K

K

K

K

K

KK

yf

dydf
I

K
















































 , K=1,2,... 

Step 4: For 2 =

)2(

2

^

  and data 

     KK xyyxyx ,,...,,,, 2211 , the least squares estimate for 

1  is easily seen to be in the form 












































 


n

K

n

K

n

K

xK

n

KxK

n

nK

n

x

KK

eey

e

)(

2

)(

2

)(

2

2

1

)1(

1

)(

1

1

)2(

)1(

1

)(

1

1





 , =1,2,… 

Step 5: Repeat the above steps until

   

 







n

nn

2

2
1

2


















,  

where   is a small specified positive number. 

3. EXAMPLE OF THE USE OF THE SA- ILS 

PROCEDURE UNDER DIFFERENT ERROR 

DISTRIBUTIONS 

We shall consider the following nonlinear regression function; 

3.1    Example:  [2] Let  

        XXY 21 sin   
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Also, assume the following two probability models for  : 

3.2   is assumed to be normally distributed with mean zero and 

variance 1, 

3.3   is assumed to have a T- distribution with r degrees of freedom 

(r ≥1) 

Which includes the Cauchy distribution (r =1). 

First of all we will explain in an analytical form the steps of the 

procedure for this sample. 

Under 3.2 It follows that Y is also distributed as 

  1;21 XSinN  . Treating  1  as known initially; and 

differentiating the log of the density of Y with respect to 2  we get: 

 
    1 2

1 2 1 2

2

ln ; ,
cos sin    ,

d f Y
X X Y X y

d

 
   


   

The Fisher information,  2I , is seen to be equal to  

    2212 cos xxI    (3.1) 

From Section 2 the optimal transformation for the stochastic 

approximation procedure is  

    

































2

21

1

2

,;ln






d

yfd

Iyh
n

nno , ,....2,1n  
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   

   























nn

nn

xx

xy

221

221

cos

sin





    









 ,...2,1,0,
2

; vvxn 


  

The optimal value of  a   that minimizes the variance of the 

asymptotic distribution of 
















2

)(

2
2

1


n

n  [1] is given by 1, thus 

n
an

1   

Now choose 

)1(

2



  as an arbitrary initial estimate of 2 , then define the 

estimating sequence 











  )(

2

n

  by: 





























































































n

n

n

nn

n

nnn

nnn

XX

XY

n )(

2

)(

2

)(

1

)(

2

)(

2

)(

1
)(

2

)1(

2

cos

sin
1






,...2,1, n  

,...},2,1,0,
2

0{  vvxn 


and the estimating sequence 

of 











  )1(

1

^ n

  is given by:  



A Stochastic Approximation – Iterative                         Shahnaz Abu- Qamar 

(48)   

2

( ) ( 1) ( ) ( 1) ( )

1 1 2 1 2
( ) 2 1 1
2

1

1ˆ ˆ ˆ ˆ ˆsin( ) (sin( )) ,
ˆ(sin( ))

n n
n n n n n

i i in
n i i

i

i

y X X

X

    



 

 



 
   

 
 



 n=1,2,…; 

x1 ≠ vπ, v=0,1,2,…, where 
  ),ˆsin(/ˆ

1

1

21

)1(

1 Xy    and x1 ≠ vπ, v 

=0,1,2,…   

Under 3.3 it follows that the density of y is  

    2

)1(
2

2121 /))sin((1
)2/(

)2/)1((
,;

r

rXy
rr

r
yf








 




    .,   y  

Treating 1 as known initially, we obtain, after some tedious 

manipulations, that  







2/

0

)1(
2/3

2 ,)(cos
3

)(



 d
r

Rr
I r

 

where  

rrr

r
rXX

R




2

2

21

)2/(

2

1
))1)(cos((2










 


  

It is straight forward to show that an alternative representation for I 

( 2 ) is 







2/

0

)1(
2/5

2 )(cos
)1)(3(

)(



 d
rr

Rr
I r

 (3.2) 

 which has the advantage of a smaller power in the integrant. Using 

(3.2), we get the following: let  )1(

2̂  be an arbitrary initial estimate 

of 2 , then it follows, after some simplifications, that the estimating 
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sequence  )(

2
ˆ n  is given by:      

     

 

  

1
/ 2

( ) ( ) ( ) ( 1)

1 2 2( 1) ( )
0

22 2 ( ) ( ) ( ) ( ) ( ) ( )

1 2 2 1 2 2

ˆ ˆ ˆ3 ( ( )sin( )) cos ( )

;
1ˆ ˆ ˆ ˆ ˆ ˆ2 ( ) cos( sin( )

2

n n n r

n nn n

n n n n n n

n n n n

r y X d

r
n X X r y X



     

 

     





 

 
   

  
             



                                                                                                         (3.3) 









 ,...2,1,0,
2

0 vvX n 


,...2,1; n 1, r , and, the 

estimating sequence  

 )1(

1
ˆ n  is given by:  

;))ˆ(sin(ˆ)ˆsin(

))ˆ(sin(

1ˆˆ

1 1

2)(

2

)1(

1

)(

1

1

2)(

2

)1(

1

)(

1 







  

  






n

i

n

i

i

nn

i

n

in

i

i

n

nn xxy

x







,...2,1n vxi , for  i=1,2,…,n , v = 0,1,2,…, where  

).ˆsin(/ˆ
1

)1(

21

)1(

1 xy    

Taking different cases of degrees of freedom r, the integral in (3.3) 

can be shown to be π/2, 1, 2/3, 384/945… for r=1,2,4,10, respectively. 

The estimating sequence  )(

2
ˆ n  in each case has the form  

    
         

;
ˆsinˆˆˆcosˆˆ

ˆsinˆˆ
ˆˆ

2
)(

2

)(

2

)(

1

)(

2

)(

2

)(

1

)(

2

)(

2

)(

1)(

2

)1(

2





 




n

nnn

nn

n

n

nn

n

nnn

nrnn

XyrXXn

Xy






,...2,1n ,  








 ,...2,1,0,
2

0 vvx n 


where 

13,7,5,4r  for 1,2,4,10=r  respectively. In each case the 

estimating sequence  )1(

1
ˆ n  is given by (3.4) .The above coefficient 

values for r  suggest that the general form is 3 rr , but we 

have not proved this analytically.  
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4. NUMERICAL SOLUTION USING THE LAWTON AND 

SYLVESTRE PROCEDURE  

Lawton and sylvestre considered the special case when the model 

has a linear and nonlinear component (see equation (1.3)). They 

introduce a modification based on the idea of reducing the number of 

parameters that must be estimated by the iterative methods. For a 

sample Y1, Y2,…,Yn, the linear parameters are estimated at each stage 

by ordinary least squares and the estimates are then substituted 

into(1.3).  

A general outline of the procedure was given is Section 1. We will 

discuss now the previous example in some detail.  

Example: 

We consider the model given in Section 3, that is  

  )sin()( 21 XXY  

In Section 2 we have found that the least squares estimate of  1  given 

by: 

 
,

)sin(

)sin(

)(ˆ

1

2

2

1

2

21








n

i

i

n

i

ii

x

xy





  

and, the reduced " model " will be  

*,)sin()(ˆ)( 221   XXY  

Where this "model", is treated as a nonlinear model with a single 

parameter 2 . We have used a linearization method as an iterative 

method for estimating the nonlinear parameter 2 . This method has 

been explained previously [4]. We will apply it directly as follows: 

Let  
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;

)cos()(ˆ

)cos()(ˆ

)cos()(ˆ

)(

2

)(
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2

)(

2

)(

212

1

)(

2

)(

211

)(











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










n
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n
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j

XX
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Z











 
;

)sin()(ˆ

)sin()(ˆ

)sin()(ˆ

)(

2

)(

21

2

)(

2

)(

212

1

)(

2

)(

211

)(
































n

jj

n

jj

jj

j

XY

XY

XY

gY










 

J=1,2,…  . 

Then, define an estimating sequence 











  )(

2

j

 by:  

  























 )()(1)()()(

2

)1(

2
ˆˆ jjjjjj gYZZZ  ,2,1, j  

Provided that   1)()(





jj ZZ  exists, i.e.  

( ) ( )1
2

1 2 2
( 1) ( ) ( ) ( )

2 2 1 2 2
( ) ( )

1 1
1 2 2

ˆ ˆ ˆ( )cos(
ˆ ˆ ˆ ˆ ˆ( )cos(

ˆ ˆ ˆ( )sin(

j j
n n i i

j j j j

i i
j j

i i
i i

X X
X X

Y X

  
    

  





 


                           

 

j=1,2,…, where 
)1(

2̂ is an initial estimate of 2 . 

 The above estimates,
)1(

2
ˆ j , will be iteratively computed, in 

each iteration the "best" companion value of  )(

21
ˆˆ j , will be 

computed by the least squares method. 

 

5- A SIMULATION STUDY  

In this section we report the findings of a simulation study to 

compare the properties of the SA-ILS procedure and Lawton and 

Sylvestre fixed sample size procedure. The model used that we 

discussed in Section 3 where   )sin( 21 XY  

Where, the error term is assumed to have є  N(0,1) and T- 

distribution with 
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 r =1,10. Different Dseeds are taken as 1234.0D0, 123457.0D0, 

17.0D0, 12.0D0 generate four samples each of size 100 from the T-

distribution mentioned above, using the IMSL routine name GGAMR. 

Values of ( 1 , 2 ) are taken as (0.25,0.65), (0.45,0.85),(0.55,0.95) 

and (0.45,0.95) were used to give different pattern for the estimates 

and number of observations needed for convergence. For the fixed 

sample size n-1000 was used, we get the same results as if the sample 

size n=100. 

The residuals є were generated using the random normal deviate 

generator available in the IMSL routine name GGNML. We are 

interested in comparing the SA-ILS procedure and the fixed sample 

size Lawton and Sylvestre procedure from the point of view of the 

number of observations needed for convergence.  

The following tables give the sample numbers of observations needed 

for convergence for the Lawton and sylvestre, and SA-ILS procedure, 

where  is taken to be 10
-2

. 

Table 5.1: Model: iii XY   )sin( 21  , where   )1,0(~ Ni  

 SA-ILS 

Procedure 

Lawton and 

Sylvestre 

Procedure   

Dseed  ( 1 , 2 ) Initial 
)1(

2̂  

no. of 

observations   

No. of 

iteration s  

123457.0D0 

12.0D0 

12.0D0 

(0.25,0.65) 

(0.45,0.95) 

(0.45,0.95) 

0.75 

0.75 

0.65 

8 

6 

4 

51 

nc.* 

nc.* 

 nc. Means no convergence  
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Table 5.2:  Model: iii XY   )sin( 21  , where 
 ~i T- 

distribution with d.f.=1 

 SA-ILS 

Procedure 

Lawton and 

Sylvestre 

Procedure   

Dseed  
( 1 , 2 ) 

Initial 
)1(

2̂  

no. of 

observations   

No. of iteration s  

1234.0D0 

1234.0D0 

123457.0D0 

123457.0D0 

(0.25,0.65) 

(0.25,0.65) 

(0.45,0.85) 

(0.45,0.95) 

0.55 

0.65 

0.75 

0.05 

9 

9 

11 

11 

nc.* 

nc.* 

108 

nc.* 

 

Table 5.3: Model: iii XY   )sin( 21  , where  ~i T- 

distribution with d.f.=10 

 SA-ILS 

Procedure  

Lawton and Sylvestre 

Procedure   

Dseed  
( 1 , 2 ) 

Initial 
)1(

2̂  

no. of 

observations   

no. of 

observations   

17.0D0 

17.0D0 

17.0D0 

17.0D0 

17.0D0 

17.0D0 

17.0D0 

17.0D0 

(0.55,0.95) 

(0.55,0.95) 

(0.55,0.95) 

(0.55,0.95) 

(0.25,0.65) 

(0.25,0.65) 

(0.25,0.65) 

(0.25,0.65) 

0.05 

0.15 

0.25 

0.02 

0.55 

0.75 

0.45 

0.60 

11 

6 

7 

11 

9 

7 

6 

6 

266 

201 

nc.* 

nc.* 

323 

160 

333 

174 

 



A Stochastic Approximation – Iterative                         Shahnaz Abu- Qamar 

(54)   

 

6. Discussion and conclusions  

We observe from the above tables that the SA-ILS procedure is 

more superior than the Lawton and sylvestre procedure, in the sense 

that the SA-ILS procedure requires numbers of observations ranging 

from 4 to 11, while the Lawton and Sylvestre procedure requires many 

iterations each using all available 100 observations, the number of the 

iterations is very large in most cases. Thus the SA-I L S procedure 

leads to a significant reduction in the amount of observations and 

calculations required.   
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