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Introduction

Let S denote the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n,

which are analytic and univalent in the unit disc U = {z : |z| < 1}.
A function f(z) ∈ S is said to be starlike of order α (0 ≤ α < 1),

denoted by S(α), if and only if

(1.2) Re{zf ′(z)
f(z) } > α (z ∈ U),

and it is called convex of order α (0 ≤ α < 1), denoted by K(α), if
and only if

(1.3) Re{1 + zf ′′(z)
f ′(z) } > α (z ∈ U).

Further,let P (α) denote the class of functions f(z) ∈ S such that

(1.4) Re{f ′(z)} > α (0 ≤ α < 1) (z ∈ U).

Let f(z) be defined by (1.1),and

(1.5) φ(z) = z +
∞∑

n=2

dn zn .
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Then the convolution or hadamard product of f(z)and φ(z) is given by

(1.6) (f ∗φ)(z) = z +
∞∑

n=2

andn zn .

A function f(z) ∈ S is said to be pre-starlike of order α (0 ≤ α < 1),
denoted by R(α), if and only if

(1.7) f(z)∗z(1−z)2α−2 ∈ S(α) .

Let T denote the class of functions of the form

(1.8) f(z) = z−
∞∑

n=2

anz
n (z ∈ U) (an ≥ 0) ,

which are analytic and univalent in U , and

S∗(α) = S(α)
⋂

T , K∗(α) = K(α)
⋂

T , P ∗(α) = P (α)
⋂

T and R∗(α) =
R(α)

⋂
T.

These classes have been studied by Silverman[5],Gupta and Jain[2],Silverman
and Silvia [6],and others.

among several interesting definitions of fractional derivative and frac-
tional integral, given in literature (cf. [1], [3]), we find it to be convenient
to to restrict ourselves to the following definition used by Owa [11](and
also by Srivastava and Owa [9]).

Definition 1. The fractional integral of order λ for a function f(z)
is defined by

(1.9) D−λ
z f(z) =

1

Γ(λ)

∫ z

0

f(t)

(z − t)1−λ
dt ,

where λ > 0, f(z) is analytic function in a simply connected region of
the z -plane containing the origin, and the multiplicity of (z − t)λ−1 is
removed by requiring log(z − t) to be real when (z − t) > 0.

Definition 2. The fractional derivative of order λ for a function f(z) is
defined by

(1.10) Dλ
z f(z) =

1

Γ(1− λ)

d

dz

∫ z

0

f(t)

(z − t)λ
dt ,
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where 0 ≤ λ < 1, f(z) is an analytic function in a simply connected re-
gion of the z -plane containing the origin, and the multiplicity of (z−t)−λ

is removed by requiring log(z − t) to be real when (z − t) > 0.

Definition 3. Under the hypothesis of Definition 2, the fractional deriva-
tive of order n + λ of f(z) is defined by

(1.11) Dn+λ
z f(z) =

dn

dzn
Dλ

z f(z), (0 ≤ λ < 1, n ∈ N0)

Following Owa and Srivastava [12], we introduce the linear operator
Ωλ

z defined by

(1.12) Ωλ
zf(z) = Γ(2−λ)zλDλ

z f(z) ,

It may noted that Ω0
zf(z) = f(z) and Ω1

zf(z) = zf ′(z).
With the implication of the operator (1.12) and by the convolution tech-
nique, we define the following class P ∗

λ (A,B, α) of certain subclass of
prestarlike and convex functions.

Definition 4. For A,B fixed,−1 ≤ B < A ≤ 1 ,0 ≤ α < 1 ,0 < λ ≤ 1 ,
let P ∗

λ (A,B, α) denote the class of functions f(z) of the form (1.8) such
that

(1.13)
Ωλ

z (f ∗ h)(z)

Ωλ−1
z (f ∗ g)(z)

≺ 1 + [B + (A−B)(1− α)]z

1 + Bz
, z ∈ U

Where ≺ denote the subordination and

g(z) = z +
∞∑

n=2

bn zn , h(z) = z +
∞∑

n=2

cn zn, cn > bn ≥ 0

Therefore , a function f(z) ∈ T belongs to the class P ∗
λ (A,B, α) if

there exists a function w(z) regular in U and satisfying w(0) = 0 and
|w(z)| < 1 for z ∈ U such that

(1.14)
Ωλ

z (f∗h)(z)

Ωλ−1
z (f∗g)(z)

= 1+[B+(A−B)(1−α)]w(z)
1+Bw(z) , z ∈ U.

The condition (1.14)is equivalent to
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(1.15)

∣∣∣∣∣∣∣∣∣∣

Ωλ
z (f∗h)(z)

Ωλ−1
z (f∗g)(z)

−1

B+(A−B)(1−α)−B
Ωλ

z (f∗h)(z)

Ωλ−1
z (f∗g)(z)

∣∣∣∣∣∣∣∣∣∣
< 1 , z ∈ U

It may be noted that the class P ∗
λ (A,B, α) is very general, it extends

the classes of starlike, convex and pre-starlike functions by assigning spe-
cific values to A, B, bn, cn, and λ .in what follow, we mention important
subclasses of the class P ∗

λ (A,B, α) .
(i) For λ = cn = A = −B = 1, and bn = 0 in (1.15), we obtain the class
P ∗(α).
(ii) For λ = cn = bn = A = −B = 1 in (1.15), we obtain the class S∗(α)
of starlike functions of order α.
(iii) For λ = A = −B = 1, and bn = cn = n, we obtain the class K∗(α)
of convex functions of order α.
(iv) Forλ = A = −B = 1, and bn = cn = B(n, α) = (2(1−α))n−1

(n−1)!
, we obtain

the class R∗(α) of pre-starlike functions of order α.

Several other classes which are studied by various researchers such as
Singl and Sohi[8],Silverman and Silva[7],Owa and Aouf [13],Shukla and
Shukla [4], can be obtained from defined above class P ∗

λ (A,B, α) .

In the present paper, we have obtained sharp results, involving coeffi-
cient estimates, distortion theorem, radius of convexity ,class preserving
integral operators, and closure theorem for the class P ∗

λ (A,B, α).

Coefficient estimates

Theorem 1. A function f(z) ,defined by (1.8), is in the class P ∗
λ (A,B, α)

if and only if

(2.1)
∞∑

n=2

{(A−B)(1−α)(2−λ)bn+[(n−λ+1)cn−(2−λ)bn](1−B)}anδ(n)

≤ (A−B)(1− α)

where

(2.2) δ(n) =
Γ(n + 1)Γ(2− λ)

Γ(n− λ + 2)
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The result is sharp.

Proof. From (1.10)and (1.12),

Ωλ
z (f ∗ h)(z) = z −

∞∑

n=2

Γ(n + 1)Γ(2− λ)

Γ(n− λ + 1)
ancn zn , cn ≥ 0

and

Ωλ−1
z (f ∗ g)(z) = z −

∞∑

n=2

Γ(n + 1)Γ(3− λ)

Γ(n− λ + 2)
anbn zn , bn ≥ 0.

Assuming that (2.1) holds and |z| = 1, we have

|Ωλ
z (f ∗ h)(z)−Ωλ−1

z (f ∗ g)(z)|
−|{B + (A−B)(1− α)}Ωλ−1

z (f ∗ g)(z)−BΩλ
z (f ∗ h)(z)|

= |−
∞∑

n=2

((n−λ+1)cn− (2−λ)bn)δ(n) an zn|− |(A−B)(1−α)z

−
∞∑

n=2

{(A−B)(1−α)(2−λ)bn−((n−λ+1)cn−(2−λ)bn)B}δ(n)an zn|

≤
∞∑

n=2

{(A−B)(1−α)(2−λ)bn+[(n−λ+1)cn−(2−λ)bn](1−B)}anδ(n)

−(A−B)(1−α)

≤ 0.

Hence by maximum modulus principle f(z) ∈ P ∗
λ (A,B, α).

Conversely, assume that f(z) is in the class P ∗
λ (A,B, α). Then

(2.3)

∣∣∣∣∣∣∣∣∣∣

Ωλ
z (f∗h)(z)

Ωλ−1
z (f∗g)(z)

−1

B+(A−B)(1−α)−B
Ωλ

z (f∗h)(z)

Ωλ−1
z (f∗g)(z)

∣∣∣∣∣∣∣∣∣∣

= |−∑∞
n=2((n−λ+1)cn−(2−λ)bn)δ(n)anzn|

|(A−B)(1−α)z−∑∞
n=2{(A−B)(1−α)(2−λ)bn−((n−λ+1)cn−(2−λ)bn)B}δ(n)anzn|

< 1.
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Since |Re(z)| ≤ |z| for any z,we find from (2.3) that

(2.4) Re
{

−
∑∞

n=2
((n−λ+1)cn−(2−λ)bn)δ(n)anzn

(A−B)(1−α)z−
∑∞

n=2
{(A−B)(1−α)(2−λ)bn−((n−λ+1)cn−(2−λ)bn)B}δ(n)anzn

}

< 1.

Now choosing, the value of z on the real axis so that
Ωλ

z (f∗h)(z)
Ωλ−1

z (f∗g)(z)
is real,

then upon clearing the denominator in (2.4) and letting z → 1 through
real values, we have

∞∑

n=2

((n−λ+1)cn−(2−λ)bn)δ(n)an ≤ (A−B)(1−α)

−
∞∑

n=2

{(A−B)(1− α)(2− λ)bn − ((n− λ + 1)cn − (2− λ)bn)B}δ(n)an

which gives the desired assertion(2.1).

Finally ,we note that equality in (2.1) holds for the function

(2.5) f(z) = z− (A−B)(1−α)
{(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn)(1−B)} δ(n) zn.

Distortion theorem

Theorem 2. Let the function f(z), defined by (1.8), be in the class

P ∗
λ (A, B, α). Then (3.1) |Dλ′−1

z f(z)| ≥ |z|2−λ′

Γ(3−λ′)

×
{

1− (A−B)(1−α)(2−λ)(3−λ)
[(A−B)(1−α)(2−λ)b2+((3−λ)c2−(2−λ)b2)(1−B)](3−λ′) |z|

}

and

(3.2) |Dλ′−1
z f(z)| ≤ |z|2−λ′

Γ(3−λ′)

×
{

1 + (A−B)(1−α)(2−λ)(3−λ)
[(A−B)(1−α)(2−λ)b2+((3−λ)c2−(2−λ)b2)(1−B)](3−λ′) |z|

}

for z ∈ U and 0 < λ′ ≤ 1.
Equalities in (3.1)and (3.2)are attained by the function given by (2.5).

Proof. In view of Theorem 1, we have
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(3.3)
∞∑

n=2

an ≤ (A−B)(1− α)

{(A−B)(1− α)(2− λ)b2 + ((3− λ)c2 − (2− λ)b2)(1−B)}δ(2)
,

where

δ(2) =
2

(2− λ)(3− λ)
.

Next, by using the definition of fractional operator Ωλ′−1
z f(z), as de-

fined in (1.12), we have.

(3.4) Ωλ′−1
z f(z) = z−

∞∑

n=2

δ′(n)an zn ,

where

(3.5) δ′(n) =
Γ(3− λ′)(Γ(n + 1))

Γ(n− λ′ + 2)

It is easily seen that δ′(n) is non-increasing ,that is , it satisfies the in-
equality δ′(n + 1) ≤ δ′(n) for all n ≥ 2, and we have

(3.6) 0 < δ′(n) ≤ δ′(2) = 2
(3−λ′) .

Consequently, we obtain

(3.7) |Ωλ′−1
z f(z)| ≥ |z|−|z|2

∞∑

n=2

anδ′(n)

≥ |z| − δ′(2)|z|2
∞∑

n=2

an

≥ |z|− (A−B)(1−α)δ′(2)
{(A−B)(1−α)(2−λ)b2+((3−λ)c2−(2−λ)b2)(1−B)}δ(2)|z|2

which proves (3.1).
similarly (3.2) can be proved and thus, details are avoided.

Corollary . Let the function f(z), defined by (1.8), be in the class
P ∗

λ (A, B, α).Then

(3.8)|f(z)| ≥ |z| (1− (A−B)(1−α)(2−λ)(3−λ)
2[(A−B)(1−α)(2−λ)b2+((3−λ)c2−(2−λ)b2)(1−B)]

|z| )
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and

(3.9) |f(z)| ≤ |z| (1+ (A−B)(1−α)(2−λ)(3−λ)
2[(A−B)(1−α)(2−λ)b2+((3−λ)c2−(2−λ)b2)(1−B)]|z| )

the result is sharp for the function defined in (2.5).

Proof. The proof follows readily from Theorem 2 in the special case
when λ′ = 1 .

Remark . Putting A = −B = λ = b2 = c2 = 1 in the Corollary 1
,we obtain the corresponding result due to Srivastava Owa and chater-
jea [10] for the class S∗(α).Similarly, for A = −B = λ = 1, b2 = c2 = 2 ,
we obtain the corresponding result in [4] for the class K∗(α).

Radius of convexity

Theorem 3. Let the function f(z) ,defined by (1.8), be in the class
P ∗

λ (A, B, α), thenf(z) is convex in the disc |z| < r,where

(4.1) r = inf
n≥2
{ [(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn)}(1−B)]δ(n)

n2(A−B)(1−α)
} 1

n−1

The result is sharp for the function f(z) given by (2.5).

Proof. To establish the required result it is sufficient to show that

| zf ′′(z)
f ′(z)

| ≤ 1 for|z| < 1, or equivalently

∑∞
n=2 n(n− 1)an|z|n−1

1−∑∞
n=2 nan|z|n−1

≤ 1

or

(4.2)
∑∞

n=2 n2an|z|n−1 ≤ 1

as f(z) ∈ P ∗
λ, µ(A,B, α), we have from Theorem 1

(4.3)
∑∞

n=2
{(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn)(1−B)}

(A−B)(1−α) anδ(n) ≤ 1

Thus, (4.2) is true if
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(4.4) n2|z|n−1 ≤{(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn)(1−B)}
(A−B)(1−α) δ(n)

Setting |z| = r1 in (4.4) and on simplification, the required result is
obtained.

Integral transforms

Theorem 4. Let the function f(z), defined by (1.8), be in the class
P ∗

λ (A, B, α),then the integral transforms

(5.1) F (z) = c+1
zc

∫ z

0
tc−1f(t) dt (c > −1)

belongs P ∗
λ (A,B, α).

Proof. From (1.8) and (5.1),we get

F (z) = z −
∞∑

n=2

c + 1

c + n
an zn .

Therefor,

∞∑

n=2

{(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn)(1−B)} c + 1

c + n
anδ(n)

<
∞∑

n=2

{(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn(1−B))} anδ(n)

≤ (A−B)(1− α) ,

which implies that F (z) ∈ P ∗
λ (A,B, α).This completes the proof of the

theorem.

Closure Properties

Theorem 5. Let the functions

fj(z) = z −
∞∑

n=2

anj zn, (j = 1, 2, ...,m)

be in the class P ∗
λ (A,B, α). Then the function h(z) defined by

h(z) = z −
∞∑

n=2

en zn
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also belongs to P ∗
λ (A, B, α), where en =

1

m

m∑

n=2

anj , (anj ≥ 0) .

Proof. Since fj(z) ∈ P ∗
λ (A,B, α),it follows from Theorem 1, that

(6.1)
∑∞

n=2{(A−B)(1− α)(2− λ)bn + ((n− λ + 1)cn − (2− λ)bn)(1−
B)}anjδ(n)

≤ (A−B)(1− α)

Therefor,

∞∑

n=2

{(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn)(1−B)}enδ(n)

=
∞∑

n=2

{(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn)(1−B)}( 1

m

m∑

n=2

anj)δ(n)

≤ (A−B)(1− α), by (6.1),
which shows that h(z) ∈ P ∗

λ (A,B, α).This completes the proof of the
theorem.
Theorem 6. Let f1(z) = z and

(6.2) fn(z) = z− (A−B)(1−α)
{(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn)(1−B)}δ(n) zn

Then f(z) ∈ P ∗
λ (A, B, α) if and only if it can be expressed in the form

(6.3) f(z) = λ1f1(z)+
∞∑

n=2

λnfn(z) ,

where λn ≥ 0 and λ1+
∞∑

n=2

λn = 1

Proof. Let (6.3)holds true ,then by (6.2),we have

f(z) = z−∑∞
n=2

(A−B)(1−α)
{(A−B)(1−α)(2−λ)bn+((n−λ+1)cn−(2−λ)bn)(1−B)}δ(n) λn zn

Now,

∞∑

n=2

{(A−B)(1−α)bn+((n−λ+1)cn−(2−λ)bn)(1−B)}δ(n)
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× (A−B)(1− α)

{(A−B)(1− α)(2− λ)bn + ((n− λ + 1)cn − (2− λ)bn)(1−B)}δ(n)
λn

= (A−B)(1− α)
∞∑

n=2

λn

≤ (A−B)(1− α)

Hence, by Theorem1 f(z) ∈ P ∗
λ (A,B, α).

Conversely, suppose f(z) ∈ P ∗
λ (A,B, α). Since

an ≤ (A−B)(1− α)

{(A−B)(1− α)(2− λ)bn + ((n− λ + 1)cn − (2− λ)bn)(1−B)}δ(n)

Setting

λn =
{(A−B)(1− α)(2− λ)bn + ((n− λ + 1)cn − (2− λ)bn)(1−B)}δ(n)

(A−B)(1− α)
an ,

and λ1 = 1 − ∑∞
n=2 λn, we get (6.3).This completes the proof of the

theorem.
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