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مفهوم .  هذا البحث يصف التشوه البلاستيكي الكبير الناتج عن ضغط بلورة نحاسية بقوة              :صملخ

الـسطح  " التشوه البلاستيكي الذي لا يعتمد على الزمن في البلورات الأحادية أُستخدم مع مفهـوم         

  .لدراسة الانزلاق المتراكم أثناء التشوه البلاستيكي الكبير للمادة" الإضافي

 وقد تبين مـن     Abaqusي تم باستخدام خوارزمية رياضية جديدة لبرنامج اباكوس         التطبيق العدد 

  .خلال النتائج كفاءة الخوارزمية المستخدمة وتطابق النتائج مع النتائج العملية والنظرية
Abstract: This work describes the large  plastic deformation and shear 
localization in channel die  compression  of a single copper crystal. The  
rate independent deformations in single crystals with the concept of 
“extremal surface”  is used. The  numerical implementation involved the 
use of a user material subroutine UMAT in FE program ABAQUS to 
evaluate large deformations. Numerical simulations are presented that 
illustrate the excellent performance of the algorithm. Good  agreement was 
found with rate dependent computations. 
Keywords: Single crystals, Constitutive behavior, Finite elements. 
 

INTRODUCTION 
 
    It is well known that phenomena responsible for inelastic deformation are 
usually  very complicated. As a result models of plasticity end gradually 
towards describing more and more elementary processes. In order to 
describe in more detail plasticity based on slips, the crystal plasticity has 
been introduced by Peirce et al. [18], Asaro[3], Kalidindi [10], 
Kirchner[11], Abu-Saman [1]. In the last years we observe a development of 
methods of modeling applied to plasticity Zbib & Rubia [20], Gearing et al. 
[9], such methods also reflect a tendency to considering the most elementary 
effects responsible for plastic deformation. Deve & Asaro [5] stated that, in 
large plastic deformation of polycrystalline materials, shear  bands play an 
important part in the deformation process and shear localization 
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progressively replaces the current deformation process by slipping  and/or 
twinning. This change in deformation mode contributes to the development 
of strain induced anistropy and modifies remarkably material properties.  
     The attempt to formulate a simple phenomenological model of large 
plastic deformations accounting for shear bands on the macroscopic level 
seems to be important for adequate theoretical description of inelastic 
behavior of metallic solids. Physical nature of shear banding is not yet 
completely explained. In particular, mechanisms of initiation and 
propagation of micro-shear bands across grain boundaries is a little known 
process. According  to studies reported by Kusnierz [13] this happens after 
reaching certain critical point on the loading or deformation path, 
represented by the critical value of flow stress or equivalent strain. In 
Korbel [12] the active micro shear bands appear as a kind of self-induced 
deformation modes.  
    Pecherski’s [16,17] theoretical studies on the basic physical mechanisms 
of micro-shear banding lead to a formulation of a phenomenological model 
of plastic flow accounting for micro-shear bands, and model the effect of 
micro-shear bands. He used the Huber-Mises yield criterion to approximate 
the extremal surface. A double-shearing system, normal to the flow plane, is 
used to represent contribution of active micro-shear bands. Pecherski [16] 
proposed the net fraction parameter to approximate the contribution of the 
shear bands in the plastic deformation process, and a crystalline parameter 
to approximate the mean orientation of micro-shear bands. 
    This paper contains Finite Element computations of large plastic 
deformation and shear localization of single crystals. A numerical  
algorithm by Abu-Saman [2]  is developed  as a user material subroutine 
UMAT in FE program ABAQUS  for evaluation of equivalent plastic 
strains.  

 
BASIC NOTATIONS 

 
   The following notations are employed: s represents the deviatric stress, 
and e is the deviatoric strain. These tensors are defined by 
s 1= −σ σ

1
3

( )tr ,                                  

e 1=    -    )ε ε
1
3

(tr ,       

where 1 is the second order unit tensor and trσ , trε  are traces of stress and 
strain tensors. 
    The natural inner products of the linear vector spaces of deviatoric stress 
and deviatoric strain are defined as 
s s =  s s    :  tr[ ] s s  t

ij ij .  ≡ ,        
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ijij
t ee   ]e . tr[e ≡  =  : ee ,        

where (. ) t  is the transposed operator. The norms associated with these inner 
products are defined as follows 
s s s s   = [  :  ]  =   J ( )  /1 2

22         
e e e e = [  :  ]  =  J ( )  /1 2

22        
where J ( )2 s  and J ( )2 e  are the second invariants of the stress and strain 
tensors.  

 
BASIC CONSTITUTIVE EQUATIONS 

 
   The extremal surface is approximated by Huber-Mises yield criterion 
Mises [15], which is used in the model of small distortional elastic strains 
and finite plastic deformations. The extremal surface is defined by the 
equation  

02 =)  (   - ,k) = f( eqγκSS ,    γ γeq eq

t
 =  dt •∫0     (1) 

                                                                2): 2 ( P21PP
    =  = /

eq DDD•γ         (2) 

where S is the deviator of Kirchhoff stress, eqγ  and  •
eqγ are the shear strain 

and the shear strain rate respectively, and κ  is hardening rule.  
  The J2 flow theory is assumed for the case when the sole mechanism of 
crystallographic multiple slip is responsible for plastic deformation. The 
contribution of mechanisms of crystallographic multiple slip is 
approximated by the flow rule 

 ˆ 
2
2 = P

S ,N D •
eqγ      (3) 

γ ηeq
•  =  2 [  ] ,      (4) 

where 
s
sN  =  ˆ , DS

P  is the plastic deformation rate, γ eq
•  is the shear rate when 

crystallographic multiple slip is the sole mechanism for plastic deformation, 
$N  is the unit vector normal to the surface defined by (1). Let D represents 

the total deformation rate expressed by 
D D D =   +    e

S
P ,       (5) 

oτα :)ˆˆ
2

 ( = 1 NNLD ⊗+−

h
,        (6) 

  where h =     
  eq

∂ κ
∂ γ

 is the plastic hardening modulus, oτ  is the structure 

corotational objective rate of the Kirchhoff stress , L  is the elastic modulus, 
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Figure (1): Geometry  shows the double shear system in the extremal 
surface model 
 
  Following Pecherski [16], a double-shearing system normal to a flow plane 
is used to represent a contribution of active micro-shear bands. Directions 

( i
∗

m , i  
∗
n  ), i =1,2, of the double-shearing system represent the shear 

direction i
∗

m  while   n
∗

i   is  normal to a shear direction. The angle θ  in Fig. 
1 approximates the mean orientation of micro-shear bands and it is a 
crystalline parameter for a single crystal which is statistically averaged for a 
polycrystalline aggregate. The compression direction  is 1i . 

  The unit vectors ( i
∗

m , i 
∗
n  ), i =1,2, are obtained directly from  geometrical 

relations in Fig. 1 and can be written in terms of  angle β  and unit vectors 
( ii n,m ), i = 1,2, where β  is the angle of rotation of  planes of active micro-
shear bands relative to planes of maximum shear stress. From Fig. 1 
β

π
θ θ

π
= − ∈

4
0

2
, ( , )     where θ   is regarded as a crystal parameter which 

approximates the mean orientation of micro-shear bands. 
   The rate of plastic deformations and plastic spin produced by active 
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micro-shear bands is given by  

si
i

i

i

)(
2

1
mb

p
mb

∗

=

∗•

⊗= ∑ nmD γ ,    (7) 

where γ
•

mb

i

 is the rate of plastic shearing along the i-th direction of shear. 
According  to Fig.1, equation  (7)  can be re-written as:  

))((  2sin
2
1))((cos2

2
2

1111

2

1

i

mb11

2

mb

1

mb
p
mb nnmmnmD ⊗−⊗+⊗−= ∑

=

•••

i
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    The rate of plastic deformation can be expressed as an additive 
decomposition of two rates: one caused by mechanisms of crystallographic 
slip P

S D , and the second occurring due to existence of micro-shear bands 
p
mbD ,  

D D  Dp
S
P

mb
p =   +   ,            (8) 

γ γ γ
∗ •

• • =   +  eq mb ,                         (9) 

where γ
∗ •

 is the total plastic shearing rate, γ eq
•   is the shear rate from the 

crystallographic slip mechanism, and γ mb
•  is the rate of plastic shearing 

produced by micro-shear bands. 
   The unit normal vector to the yield surface $N  and the unit orthogonal 
vector to it $T  can be written in terms of double shearing directions (e.g., 
Pecherski [16]). 
$ (N m n =     )2 1 1⊗ ,           (10) 

$T =  ( m m n n  )2
2

1 1 1 1⊗ − ⊗ .           (11) 

From the consistency condition f ( ,k)
•

S  = 0,  the total shearing rate can be 
written as  

)ˆ:(
h2
2 = Noτγ

∗•
.       (12) 

  The orthogonal component T̂  can be written in terms of the deviator 
Kirchhoff stress •oτ as:  

]ˆ)ˆ:( - [  = ˆ NNT oo ττ
•

Λ .                                                                                         (13) 

where 
1

ˆ)ˆ:( - 
−•

=Λ NNoo ττ  is the normalizing factor.  

   Following Pecherski [16], the rate of plastic deformation D P  can be 
written in terms of  active micro-shear fractions fms

( )1  and  f ( )
ms

2  
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D N N N N NP
ms msh h

f =     -  f    -  ( ) ( )1
2 2

21 2( : $ ) $ ( : $ )( ) tan [ ( : $ ) $ ]τ τ β τ τo o o o+
•Λ ,                (14) 

by substitution (12) and (13) into (14), D P  can be written in terms of $T  and 
$N   

D  N TP
ms msf =  

2
 +   -  f   ]( ) ( )γ

β

• ∗

[ $ $ ( ) tan1 2 2 .                  (15) 

 
NUMERICAL RESULTS 

 
   The numerical analysis is conducted by using the finite element program 
ABAQUS with constitutive relations incorporated into a user subroutine. 
The user material subroutine algorithm used is developed by Abu-Saman 
[2]. The deformation is modeled by considering a small part of a crystal as a 
representative unit volume. Actual dimensions of a region are irrelevant to 
this model, since constitutive relations do not include a size scale. The 
initial height and width of a model region are    S  , W= S   and    W1.5 = L ooooo  is 
the out-of plane dimension (Fig. 3).  
   Compression is along the y direction.  The material extends in the x 
direction and z is the out of plane direction. 
     The crystal is represented by five hundred and seventy square, two-
dimensional, plane-strain, four-nodded elements. The finite element mesh 
consists of 30 quadrilaterals in the y-direction and 19 in the x-direction. The 
boundary conditions are the following: 

 

o

oo

 W=  x  along        constant   = U
0 =  x  along                    0  = U

L =y   along        L .001- =  

0 =y    along                    0 =  

x

x

y

y

U

U

 

   All surfaces are constrained to remain planar. The boundary conditions are 
shown in Fig.(4). The elastic constants used in the finite element 
calculations are C11=842.0 τo , C12 =  607.0 τo  and  C44 =377.0 τo , that 
correspond to Young’s modulus E=1000 τo , where τo  is the yield limit, and 
Poisson’s ratio υ =0.3. The constants are  taken to fit the elastic anisotropy 
of a copper single crystal [7]. The net fraction is given by  
F A

e
ms
net

B c
=

+ −( )1 ε
, where A=0.9, B=6.5,  C=11.8, and β = 05. o . 

The hardening law  is defined by: 



                       Rate Independent Simulation of  Shear Localization in …..                         15 

)125.11tanh(
125.11
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Figure 3 A copper single crystal in a channel die 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure(4):  Boundary conditions applied to the copper crystal deformed in 
a channel die. 
Deformed finite element meshes for the plain strain compression 
simulation are shown in Figs.(5(a)-5(c)) for various values of the 
compressive logarithmic strain )/ln(22 oLL−=ε with the current L and the 
initial length oL  of the finite element mesh along y-direction. In Fig. 5(c) a 
shear band formation is clear. 
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o
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X
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                                         (a) 

 

 
                                          (b) 

 
                                                                                  (c) 
Figure (5): Deformed finite element meshes for a copper single crystal, 
for various values of strain   (a) ε 22 =0.164,    (b) ε 22 =0.255, (c) ε 22 =0.58. 
 
   Figs.(6-8) show the corresponding strain levels depicted in Fig.(5). 
Fig.(6(a)) and (6(b)) show that the deformation is becoming non-uniform. 
When ε 22  = 0.164 the shear localized in a zone from north-east to the 
south-west, with the highest slip rate in localized zone, but strains do not 
exceed the applied uniform strain of 0.164. Fig.(7) corresponding to strain 
level depicted in Fig.(5(b)) shows the start of localization in the zone from 
the north-west to the south-east. Fig.(8), that corresponds to strain level 
depicted in Fig.(5(c)) shows the propagation of shear mode in a form of a 
shear band across the north-west to the south-east of the specimen inclined 
at an angle approximately equal to 36o  to the horizontal direction. The 
angle of inclination is consistent with computational results of (bcc) crystal 
rate dependent simulations carried by Peirce et al. [18], Abu-Saman [1] and 
experimental results conducted by Chang & Asaro [4] on single crystals.  
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(a) (b) 

  
Figure(6): (a)contours of accumulated slip; (b) contours of equivalent 
strain; for the strain ε 22 =0.164 for a deformed copper crystal shown in 
Fig.5(a).  

(a)                                               (b) 
  

Fig.(7): (a)Contours of accumulated slip; (b)contours of equivalent 
strain for strain ε 22 =0.255 for a deformed copper crystal shown in Fig. 
5(b).   

Strain inside the shear band reached a value of 1.17, which is 
significantly higher than the applied strain of 0.58. This agrees with Harren 
et al. [6] plane strain compression results. It is noticeable that  the shear 
band in Fig.(5(c)) is not  sharp and the shear localization zone is wide.  
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(a) 

 
 

                   
  (b) 

 
Figure(8): (a) Contours of accumulated  slip; (b) contours of equivalent 
strain for the strain ε 22 = 0.58 for  a deformed copper crystal shown in 
Fig. 5(c).  

 
CONCLUSIONS 

   In this paper the rate independent  constitutive equations  have been  
formulated and implemented to study shear localization in single crystals. 
These constitutive equations are a natural, more physical generalization of 
the classical 2J  rate independent flow theory, and the integration procedure 
is a generalization of the classical return mapping algorithm. The algorithm 
was successfully implemented into ABAQUS using the user material 
subroutine UMAT. The ABAQUS modeling results of shear bands in a 
channel die problem  showed good agreement with the experimental and 
numerical computational results. In the simulation of the copper single 
crystal, the angles of inclination of shear bands and the onset of non-
uniform localization  agree with experimental results obtained by Embury  
et al.  [8] and Harren et al. [6] for (bcc) crystals, and with the rate dependent 
numerical computations carried out by Peirce  et al. [18] and Abu-Saman [1]. 
In spite of the complexity, the extremal surface concept of large plastic 
deformation can be applicable in modeling of large plastic deformations 
under highly constrained conditions. 
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